Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First detection of methyl alcohol in a planet-forming disc


The protoplanetary disc around the young star TW Hydrae is the closest known example to Earth, at a distance of only about 170 light-years. As such it is an ideal target for astronomers to study discs. This system closely resembles what astronomers think the Solar System looked like during its formation more than four billion years ago.

The Atacama Large Millimeter/Submillimeter Array (ALMA - is the most powerful observatory in existence for mapping the chemical composition and the distribution of cold gas in nearby discs. These unique capabilities have now been exploited by a group of astronomers led by Catherine Walsh (Leiden Observatory, the Netherlands) to investigate the chemistry of the TW Hydrae protoplanetary disc.

This artist's impression shows the closest known protoplanetary disc, around the star TW Hydrae in the huge constellation of Hydra (The Female Watersnake). The organic molecule methyl alcohol (methanol) has been found by the Atacama Large Millimeter/Submillimeter Array (ALMA) in this disc. This is the first such detection of the compound in a young planet-forming disc.

Credit: ESO/M. Kornmesser

The ALMA observations have revealed the fingerprint of gaseous methyl alcohol, or methanol (CH3OH), in a protoplanetary disc for the first time. Methanol, a derivative of methane, is one of the largest complex organic molecules detected in discs to date. Identifying its presence in pre-planetary objects represents a milestone for understanding how organic molecules are incorporated into nascent planets.

Furthermore, methanol is itself a building block for more complex species of fundamental prebiotic importance, like amino acid compounds. As a result, methanol plays a vital role in the creation of the rich organic chemistry needed for life.

Catherine Walsh, lead author of the study, explains: "Finding methanol in a protoplanetary disc shows the unique capability of ALMA to probe the complex organic ice reservoir in discs and so, for the first time, allows us to look back in time to the origin of chemical complexity in a planet nursery around a young Sun-like star."

Gaseous methanol in a protoplanetary disc has a unique importance in astrochemistry. While other species detected in space are formed by gas-phase chemistry alone, or by a combination of both gas and solid-phase generation, methanol is a complex organic compound which is formed solely in the ice phase via surface reactions on dust grains.

The sharp vision of ALMA has also allowed astronomers to map the gaseous methanol across the TW Hydrae disc. They discovered a ring-like pattern in addition to significant emission from close to the central star [1].

The observation of methanol in the gas phase, combined with information about its distribution, implies that methanol formed on the disc's icy grains, and was subsequently released in gaseous form. This first observation helps to clarify the puzzle of the methanol ice-gas transition [2], and more generally the chemical processes in astrophysical environments [3].

Ryan A. Loomis, a co-author of the study, adds: "Methanol in gaseous form in the disc is an unambiguous indicator of rich organic chemical processes at an early stage of star and planet formation. This result has an impact on our understanding of how organic matter accumulates in very young planetary systems."

This successful first detection of cold gas-phase methanol in a protoplanetary disc means that the production of ice chemistry can now be explored in discs, paving the way to future studies of complex organic chemistry in planetary birthplaces. In the hunt for life-sustaining exoplanets, astronomers now have access to a powerful new tool.



[1] A ring of methanol between 30 and 100 astronomical units(au) reproduces the pattern of the observed methanol data from ALMA. The identified structure supports the hypothesis that the bulk of the disc ice reservoir is hosted primarily on the larger (up to millimetre-sized) dust grains, residing in the inner 50 au, which have become decoupled from the gas, and drifted radially inwards towards the star.

[2] In this study, rather than thermal desorption (with methanol released at temperatures higher than its sublimation temperature), other mechanisms are supported and discussed by the team, including photodesorption by ultraviolet photons and reactive desorption. More detailed ALMA observations would help to definitely favour one scenario among the others.

[3] Radial variation of chemical species in the disc midplane composition, and specifically the locations of snowlines ( , are crucial for understanding the chemistry of nascent planets.The snowlines mark the boundary beyond which a particular volatile chemical species is frozen out onto dust grains. The detection of methanol also in the colder outer regions of the disc shows that it is able to escape off the grains at temperatures much lower than its sublimation temperature, necessary to trigger thermal desorption.

More information

This research was presented in a paper entitled "First detection of gas-phase methanol in a protoplanetary disk", by Catherine Walsh et al., published in Astrophysical Journal, Volume 823, Number 1.

The team is composed of Catherine Walsh (Leiden Observatory, Leiden University, Leiden, The Netherlands), Ryan A. Loomis (Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA), Karin I. Öberg (Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA), Mihkel Kama (Leiden Observatory, Leiden University, Leiden, The Netherlands), Merel L. R. van't Hoff (Leiden Observatory, Leiden University, Leiden, The Netherlands), Tom J. Millar (School of Mathematics and Physics, Queen's University Belfast, Belfast, UK), Yuri Aikawa (Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan), Eric Herbst (Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, Virginia, USA), Susanna L. Widicus Weaver (Department of Chemistry, Emory University, Atlanta, Georgia, USA) and Hideko Nomura (Department of Earth and Planetary Science, Tokyo Institute of Technology, Tokyo, Japan).

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become "the world's biggest eye on the sky".


* Research paper -

* Earlier ALMA observations of organic compounds in discs -

* Photos of ALMA -

* Other press releases featuring ALMA -


Catherine Walsh
Leiden Observatory
Leiden University, The Netherlands
Tel: +31 71527 ext 6287

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591

Richard Hook | EurekAlert!

Further reports about: ALMA ESO Observatory Telescope protoplanetary disc

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>