Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First component delivered for FAIR’s ring accelerator

10.03.2016

Delivery of components commences for the centerpiece of the future FAIR facility in Darmstadt, the 1,100-meter-long ring accelerator. The components are being developed and produced all over the world. The first component was a bunch compressor manufactured by Aurion Anlagentechnik GmbH in Seligenstadt, Germany, on the basis of advance developments by GSI. GSI will first subject the bunch compressor to extensive acceptance tests. The other eight bunch compressors can be series produced once testing is completed. The bunch compressors will bundle accelerated particles into bunches denser than ever before. Scientists will need dense bunches for new experiments to be conducted at FAIR.

“FAIR’s ring accelerator will be composed of many different components that we design, develop, and plan in detail with the help of complex calculations and design studies,” says GSI project area manager Peter Spiller, who is responsible, among other things, for the construction of the ring accelerator at FAIR. “The fact that the delivery of the components has now begun is a real milestone for us. We expect to receive several additional components this year.”


View into the interior of the bunch compressor.

G. Otto, GSI Helmholtzzentrum für Schwerionenforschung


GSI high-frequency physicist Dr. Hans Günter König (l.) discusses with Joachim Scherer, Director of Aurion Anlagentechnik GmbH (m.), and head of the GSI project area Dr. Peter Spiller (r.)

G. Otto, GSI Helmholtzzentrum für Schwerionenforschung

“We’re delighted that the development and production of the bunch compressors has enabled our small Hessian company to make a major contribution to FAIR, a globally significant high-tech project,” says Joachim Scherer, Managing Director of Aurion Anlagentechnik GmbH in Seligenstadt.

FAIR’s ring accelerator will be able to accelerate ions (electrically charged atoms) from any element as well as antiprotons to almost the speed of light. Before particles are accelerated, they first have to be packed into bunches that consist of up to 500 billion ions each. The particles are then channeled to the various experiments. The size of the ion bunches depends on the experiment they are used for. The bunch compressor can generate especially short pulses that are needed for experiments in plasma physics and nuclear astrophysics, for example.

“The bunches have a temporal length of 200 to 300 nanoseconds during acceleration. This is too long for some experiments, which require the large number of ions in a shorter period of time,” says Spiller. “The bunch compressor system shortens the ion bunches to a duration of 30 to 90 nanoseconds. To do this, we use high-frequency electric fields that compress the ion pulse by rotating it in the phase space.”

“The bunch compressor is 2 meters long and 1.20 meters wide. It is 2.10 meters tall and weighs around two tons. The key structural elements are two sets of eight disks composed of special magnetic alloys that are arranged around the beamline. These disks can generate a high-frequency voltage of 40,000 volt,” says high-frequency physicist Hans Günter König from GSI’s Ring RF department.

König and his colleague Peter Hülsmann were the main people in charge of implementing the project technology and liaising with the manufacturer. “In the next step, the device will be subjected to extensive testing that will be conducted on the test rig for high-frequency systems at GSI. These tests are scheduled to be completed this spring. Series production will begin as soon as the bunch compressor has passed all of the tests.”

FAIR will be one of the largest and most complex accelerator facilities in the world. The existing GSI accelerator facility will be part of FAIR and serve as first acceleration stage. For FAIR engineers and scientists will expedite technological developments in many areas in international cooperation, for example in computer science or in superconductivity techniques. Approximately 3,000 scientists from all over the world will conduct cutting-edge research at FAIR. In unique experiments they will gain new basic insights into the structure of matter and the evolution of the universe.

Weitere Informationen:

https://www.gsi.de/en/start/news/detailseite/2016/03/08/first-component-delivere...

Dr. Ingo Peter | GSI Helmholtzzentrum für Schwerionenforschung GmbH

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>