Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Entanglement Becomes Easier to Measure

22.03.2016

Physicists have developed a new protocol to detect entanglement of many-particle quantum states using a much easier approach. The protocol is particularly interesting for characterizing entanglement in systems involving many particles. These systems could help us not only to improve our understanding of matter but to develop measurement techniques beyond current existing technologies.

In quantum theory, interactions among particles create fascinating correlations known as entanglement that cannot be explained by any means known to the classical world. Entanglement is a consequence of the probabilistic rules of quantum mechanics and seems to permit a peculiar instantaneous connection between particles over long distances that defies the laws of our macroscopic world - a phenomenon that Einstein referred to as “spooky action at a distance.”


A new-found theoretical relation now allows extracting multiparticle entanglement with standard tools available in scattering experiments.

IQOQI/Ritsch

Developing protocols to detect and quantify entanglement of many-particle quantum states is a key challenge for current experiments because entanglement becomes very difficult to study when many particles are involved.

“We are able to control smaller particle ensembles well, where we can measure entanglement in a relatively straight forward way,” says quantum physicist Philipp Hauke. However, “when we are dealing with a large system of entangled particles, this measurement is extremely complex or rather impossible because the resources required scale exponentially with the system size.”

Philipp Hauke and Peter Zoller from the Department of Theoretical Physics at the University of Innsbruck and the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences in collaboration with Markus Heyl from the Technical University of Munich, and Luca Tagliacozzo from ICFO - The Institute of Photonic Sciences have found a new way to detect certain properties of many-particle entanglement independent of the size of the system and by using standard measurement tools.

Entanglement measurable via susceptibility

“When dealing with more complex systems, scientists had to carry out a large number of measurements to detect and quantify entanglement between many particles,” says Philipp Hauke. “Our protocol avoids this problem and can also be used for determining entanglement in macroscopic objects, which was nearly impossible until now.”

With this new method theoretical physicists are able to use tools already well established experimentally. In their study, published in Nature Physics, the team of researchers give explicit examples to demonstrate their framework: The entanglement of many-particle systems trapped in optical lattices can be determined by laser spectroscopy, and the well-established technique of neutron scattering may be used for measuring it in solid-state systems.

As the physicists have been able to show, the quantum Fisher information, which represents a reliable witness for genuinely multipartite entanglement, is in fact measurable. The researchers have highlighted that entanglement can be detected by measuring the dynamic response of a system caused by a perturbation, which can be determined by comparing individual measurements. “For example, when we move a sample through a time-dependent magnetic field, we can determine the system’s susceptibility towards the magnetic field through the measurement data and thereby detect and quantify internal entanglement,” explains Hauke.

Manifold applications

Quantum metrology, i.e. measurement techniques with increased precision exploiting quantum mechanics, is not the only important field of application of this protocol. It will also provide new perspectives for quantum simulations, where quantum entanglement is used as a resource for studying properties of quantum systems. In solid-state physics, the protocol may be used to investigate the role of entanglement in many-body systems, thereby providing a deeper understanding of quantum matter.

The research work was supported by the Austrian Science Fund and the European Research Council.

Publication: Measuring multipartite entanglement via dynamic susceptibilities. Philipp Hauke, Markus Heyl, Luca Tagliacozzo, Peter Zoller. Advanced Online Publication, Nature Physics, on 21 March 2016. http://dx.doi.org/10.1038/nphys3700

Contact:
Philipp Hauke
Department of Theoretical Physics
University of Innsbruck
phone: +43 512 507 4787
email: philipp.hauke@uibk.ac.at

Christian Flatz
Public Relations
University of Innsbruck
phone: +43 512 507 32022
email: christian.flatz@uibk.ac.at

Weitere Informationen:

http://www.uibk.ac.at/th-physik/qo - Quantum Optics Theory Group, University of Innsbruck

Dr. Christian Flatz | Universität Innsbruck

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>