Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of the most accelerated binary pulsar

07.09.2017

Fifty years after Jocelyn Bell discovered the first pulsar, students are no longer going through reams of paper from pen chart recorders but instead search through 1,000s of terabytes of data to find these enigmatic pulsating radio stars. The most extreme binary pulsar system so far, with accelerations of up to 70 g has been discovered by researchers at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn. At their closest approach the orbit of the pulsar and its companion neutron star would easily fit inside the radius of the Sun.

Although most of the more than 2,500 pulsars known are solitary objects, a few are found in tight binary systems. The discovery of the first of these, the Hulse-Taylor pulsar, famously won the Nobel Prize for “opening up new possibilities for the study of gravitation.”


The orbits of the new binary pulsar J1757-1854 in comparison to both, the famous Hulse-Taylor pulsar, and the double pulsar J0737-3039, so far the best cosmic laboratory for testing Einstein’s GRT.

Norbert Wex/MPIfR (Sun: NASA/SOHO)

This latest discovery was made as part of the High Time Resolution Universe Survey for pulsars using the 64-m Parkes telescope in Australia. The survey is a collaboration between the Australia Telescope National Facility, Istituti Nazionale di Astrofisica, Manchester University, Swinburne University and the MPIfR.

“The challenge is not in the observing but in the processing of the data, which requires huge amounts of computing power,” explains David Champion, an astronomer at the MPIfR and one of the PIs of the project. “We also had to develop new algorithms to search specifically for these accelerated systems.”

Using powerful computing clusters across the world, including the MPIfR’s ‘Hercules’ cluster located at the MPG’s computer centre at Garching, researchers were able to search their data in unprecedented detail for these rare objects.

The pulsar was discovered by Andrew Cameron, a PhD student at the MPIfR responsible for processing the data, “After going through 100s of 1,000s of candidates this one immediately stood out because of its large acceleration. I realised that it was potentially very exciting but it took months of detective work before we knew exactly what we’d found.”

The system was soon also being observed by Manchester University’s 76-m Lovell telescope, the 100-m Green Bank telescope, with collaborators at West Virginia University, and the MPIfR’s 100-m Effelsberg telescope.

The new system will be an excellent laboratory to test theories of gravity, including General Relativity.

“This system shows many similarities with the Nobel Prize winning binary, but this one is even more extreme,” concludes Norbert Wex, also at the MPIfR, an expert in testing gravity theories using pulsars. “Some GR effects are stronger than in any other binary pulsar. That makes it a great system to test Einstein’s theory.”

Contact:

Andrew Cameron
Max-Planck-Institut für Radioastronomie, Bonn.
Fon +49 228 525-181
E-Mail: acameron@mpifr-bonn.mpg.de

Dr. David Champion
Max-Planck-Institut für Radioastronomie, Bonn.
Fon +49 228 525-315
E-Mail: davidjohnchampion@gmail.com

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2017/8

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>