Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting radio waves with entangled atoms

02.08.2017

Ultra-sensitive receiver also blocks unwanted signals

In a study published in Physics Review Letters, and highlighted by APS Physics, ICFO researchers demonstrate a new technique for the coherent the detection of radio frequency magnetic fields using an atomic magnetometer. They use highly sensitive, nondestructive measurements to entangle the atoms, while maintaining their collective coherence, and a new technique to allow the coherent buildup of signal from arbitrarily shaped waveforms.


Schematic illustration of the experimental setup.

Credit: ICFO

In this study, ICFO researchers Ferran Martin Ciurana, Dr. Giorgio Colangelo, Dr. Rob Sewell, led by ICREA Prof. at ICFO Morgan Mitchell, trap an ensemble of more than a million rubidium atoms which have been laser-cooled to 16 ?K, close to absolute zero. They apply a static magnetic field to the trapped atoms, so that the atomic spins precess (rotate) synchronously (coherently) at a precise frequency of 42.2 kHz, within the low frequency band used for AM radio broadcasting. They then apply a weak resonant radio frequency field in an orthogonal direction, which perturbs the atomic spin precession - this is the signal they want to detect.

In a standard rf magnetometer, the atomic spins are allowed to evolve freely for some time under the influence of this perturbation to allow the coherent buildup of signal, before the change in the atomic state is detected. Typically, this technique is only sensitive to an rf field applied at a fixed resonant frequency.

In this study, the authors use two techniques to improve their measurement. First, they use stroboscopic quantum non-demolition measurements to prepare an entangled atomic spin state at the start of the detection sequence. This allows them to reduce the quantum noise coming from the atoms, and improve the sensitivity of the magnetometer beyond the standard quantum limit.

Second, they use a new technique developed in the group to allow the coherent detection of an rf field with a changing frequency - as is used, for example, in an FM radio broadcast. During the free evolution time, they use the applied static magnetic field to continuously shift the resonance frequency of the atoms to match the changing frequency of the rf field. This allows the atoms to coherently build up signal from a single arbitrary rf waveform, while blocking unwanted signals from orthogonal waveforms.

They then detect the perturbed atoms using a second stroboscopic quantum non-demolition measurement in order to measure the signal due to the rf field, and verify the entanglement generated among the atomic spins.

The researchers demonstrated their technique by detecting a linearly chirped rf field with a sensitivity beyond the standard quantum limit. They were able to measure the weak rf magnetic-field signal with a 25% reduction in experimental noise due to the quantum entanglement of the atoms, and a sensitivity comparable to the best rf magnetometers used to date.

The technique may have applications ranging from the detection of bio-magnetic fields, and characterization of micro-electronics, to searches for extra-terrestrial civilizations.

###

ABOUT ICFO:

ICFO - The Institute of Photonic Sciences, member of The Barcelona Institute of Science and Technology, is a research center located in a specially designed, 14.000 m2-building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona. It currently hosts 400 people, including research group leaders, post-doctoral researchers, PhD students, research engineers, and staff. ICFOnians are organized in 27 research groups working in 60 state-of-the-art research laboratories, equipped with the latest experimental facilities and supported by a range of cutting-edge facilities for nanofabrication, characterization, imaging and engineering.

The Severo Ochoa distinction awarded by the Ministry of Science and Innovation, as well as 14 ICREA Professorships, 25 European Research Council grants and 6 Fundació Cellex Barcelona Nest Fellowships, demonstrate the centre's dedication to research excellence, as does the institute's consistent appearance in top worldwide positions in international rankings. From an industrial standpoint, ICFO participates actively in the European Technological Platform Photonics21 and is also very proactive in fostering entrepreneurial activities and spin-off creation. The center participates in incubator activities and seeks to attract venture capital investment. ICFO hosts an active Corporate Liaison Program that aims at creating collaborations and links between industry and ICFO researchers. To date, ICFO has created 5 successful start-up companies.

LINKS:

Link to the paper: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.043603

APS Physics highlight: https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.119.043603

Link to the research group led by ICREA Prof. at ICFO Morgan Mitchell: https://www.icfo.es/research/groups-details?group_id=20

Media Contact

Alina Hirschmann
alina.hirschmann@icfo.es
0034-935-542-246

http://www.icfo.es 

Alina Hirschmann | EurekAlert!

Further reports about: APS ICFO Photonic atomic spin magnetic field radio frequency radio waves sensitivity

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>