Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calm lakes on Titan could mean smooth landing for future space probes

06.07.2017

The lakes of liquid methane on Saturn's moon, Titan, are perfect for paddling but not for surfing. New research led by The University of Texas at Austin has found that most waves on Titan's lakes reach only about 1 centimeter high, a finding that indicates a serene environment that could be good news for future probes sent to the surface of that moon.

"There's a lot of interest in one day sending probes to the lakes, and when that's done, you want to have a safe landing, and you don't want a lot of wind," said lead author Cyril Grima, a research associate at the University of Texas Institute for Geophysics (UTIG). "Our study shows that because the waves aren't very high, the winds are likely low."


Titan is Saturn's largest moon. Its cloudy appearance comes from an atmosphere mixed with gaseous nitrogen and hydrocarbons.

Credit: NASA Jet Propulsion Laboratory/ Cassini Orbiter.

The research was published in the journal Earth and Planetary Science Letters on June 29. Collaborators include researchers at Cornell University, NASA's Jet Propulsion Laboratory and The Johns Hopkins University Applied Physics Laboratory. UTIG is a research unit of the UT Jackson School of Geosciences.

Titan is the largest moon of Saturn and one of the locations in the solar system that is thought to possess the ingredients for life. In photos taken by the Cassini orbiter, a NASA probe, it appears as a smooth brown orb because of its thick atmosphere clouded with gaseous nitrogen and hydrocarbons.

However, radar images from the same probe show that it has a surface crust made of water ice and drenched in liquid hydrocarbons. On Titan, methane and ethane fall from the sky as rain, fill deep lakes that dot the surface, and are possibly spewed into the air by icy volcanoes called cryovolcanoes.

"The atmosphere of Titan is very complex, and it does synthesize complex organic molecules--the bricks of life," Grima said. "It may act as a laboratory of sorts, where you can see how basic molecules can be transformed into more complex molecules that could eventually lead to life."

On top of that, it's also thought to have an ocean of liquid water beneath its icy crust.

As a graduate student at the Université Grenoble Alpes in France, and then a postdoctoral fellow at UTIG, Grima developed a technique for measuring surface roughness in minute detail from radar data. Called radar statistical reconnaissance, the technique has been used to measure the snow density and its surface roughness in Antarctica and the Arctic, and to assist the landing site selection of NASA's Mars lander InSight, which is scheduled to launch next year. Researchers at NASA's Jet Propulsion Laboratory suggested he apply the technique to measuring Titan's waves.

The research zeroes in on the three largest lakes in Titan's northern hemisphere: Kraken Mare, Ligeia Mare and Punga Mare. Kraken Mare, the largest of the three, is estimated to be larger than the Caspian Sea. By analyzing radar data collected by Cassini during Titan's early summer season, Grima and his team found that waves across these lakes are diminutive, reaching only about 1 centimeter high and 20 centimeters long.

"Cyril's work is an independent measure of sea roughness and helps to constrain the size and nature of any wind waves," said co-author Alex Hayes, an assistant professor of astronomy at Cornell University. "From the results, it looks like we are right near the threshold for wave generation, where patches of the sea are smooth and patches are rough."

The results call into question the early summer's classification as the beginning of the Titan's windy season, Grima said, because high winds probably would have made for larger waves.

Information on Titan's climate is essential for sending a probe safely to the surface. Although there are no formal plans for a mission, Grima says that there are plenty of concepts being developed by researchers around the world. The study indicates that if a future mission lands in early summer, there's a good chance that it is in for a smooth landing.

###

The research was funded by NASA and the California Institute of Technology Jet Propulsion Laboratory.

Media Contact

Monica Kortsha
mkortsha@jsg.utexas.edu
512-471-2241

 @UTAustin

http://www.utexas.edu 

Monica Kortsha | EurekAlert!

Further reports about: Atmosphere Caspian Sea Cassini NASA Propulsion Titan hydrocarbons surface roughness water ice waves

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>