Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bubbling down: Discovery suggests surprising uses for common bubbles

20.08.2014

Anyone who has ever had a glass of fizzy soda knows that bubbles can throw tiny particles into the air. But in a finding with wide industrial applications, Princeton researchers have demonstrated that the bursting bubbles push some particles down into the liquid as well.

"It is well known that bursting bubbles produce aerosol droplets, so we were surprised, and fascinated, to discover that when we covered the water with oil, the same process injected tiny oil droplets into the water," said Howard Stone, the Donald R. Dixon '69 and Elizabeth W. Dixon Professor of Mechanical and Aerospace Engineering at Princeton and the lead researcher for the project.


The researchers send bubbles through a tank containing a thin surface of oil above a water bath to make their observations.

The conclusions provide new insight into the mixture of non-soluble liquids — a process at the center of many fields from drug manufacturing to oil spill cleanups.

In an article published on July 13 in the scholarly journal Nature Physics, the researchers describe how they reached their conclusions after examining bubbles in containers holding water covered by a layer of oil. Using several experimental approaches, they presented a detailed physical description of how the bubbles burst and how that affected the oil and water mix.

"If you look at this system, which has a thin layer of oil over water, the bursting bubbles were dispersing the oil phase in the form of nano-droplets into the water," said Jie Feng, a graduate student in Stone's lab and the lead author of the paper. "Essentially, it is an unrealized form of mass transport related to bubble bursting."

In one observation, the researchers noted that the water in one container changed from clear to translucent after bubbles ran through the mixture for some time. The change in appearance "suggested that small objects had been dispersed in the lower water phase," the researchers wrote.

To get a better understanding of how this was happening, they used a high-speed camera to break down the steps involved in a bubble's final pop. They found that a bubble's collapse caused a pressure wave just below the bubble; this wave pushed a small amount of liquid out and down, away from the collapsing void.

The researchers also found that the addition of a surfactant, which decreases surface tension, was critical to the formation of the nano-droplets. In fact, they concluded that without a proper amount of surfactant, the droplets would not form.

The nano-droplets are so small they are impossible to see with the naked eye, so the researchers performed further experiments to test their analysis. In one, they spread an extremely thin layer of latex particles over the water and were able to observe the particles moving into the water. They also added a layer of material that is sensitive to ultraviolet light and then used the light to solidify the droplets for observation in the water mixture.

Bubbles' ability to mix liquids offers insights into a number of important systems. During oil spills, for example, it is important to understand how the oil moves from the surface of the water into deeper layers. This has generally been attributed to wave action, but the researchers' findings indicate that even in a flat calm the oil can gradually filter down into the water because of tiny bubbles.

"Bubbles are used to make foams and are part of common gas-liquid processes used in chemical processing," Stone said. "But bubbles also occur in lakes, rivers and oceans because of wave breaking and rain. As a consequence, bubbles can impact many systems."

The researchers said that bubbling also might play a role in a critical system in which organic matter circulates through the ocean. A thin film of material, called the sea surface microlayer, rests at the very top of ocean water. The microlayer contains lipids, proteins and hydrocarbon pollutants.

"Our work suggests that the sea surface microlayer may not only be transported into the atmosphere within aerosol droplets produced by bursting bubbles, but it might also be dispersed into the bulk of the oceans, thus redistributing organic matter into the ecosystem," they wrote.

Feng also said that applying this approach could play an important role in many industrial mixing systems. For one, this manner of bubbling to produce nanoemulsions uses much less energy than traditional mixers, so it is cheaper and more efficient. It also does not require extremely low surface tensions, which some types of industrial processes require. And it provides a good method to mix typically insoluble liquids, such as oil and water.

"This system offers an energy-efficient route to produce nanoparticles, with the potential to increase in scale, for applications in a variety of fields such as drug delivery, food production and materials science," he said.

Besides Stone and Feng, the project researchers included Matthieu Roche and Daniele Vigolo (now research associates in Paris and Zurich, respectively) who worked as postdoctoral researchers in Princeton's Department of Mechanical and Aerospace Engineering; Luben Arnaudov and Simeon Stoyanov, of Unilever Research and Development; and Theodor Gurkov and Gichka Tsutsumanova, of Sofia University, Bulgaria.

Support for the research was provided in part by grant from the Consortium for the Molecular Engineering of Dispersant Systems funded by the BP/Gulf of Mexico Research Initiative, and the European Union's Beyond Everest project.

John Sullivan | Eurek Alert!
Further information:
http://www.princeton.edu/main/news/archive/S40/83/85S57/index.xml?section=topstories

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>