Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better memory with faster lasers

14.07.2015

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states.

Using ultrafast laser pulses that speed up the data recording process, Caltech researchers adopted a novel technique, ultrafast electron crystallography (UEC), to visualize directly in four dimensions the changing atomic configurations of the materials undergoing the phase changes. In doing so, they discovered a previously unknown intermediate atomic state--one that may represent an unavoidable limit to data recording speeds.


Using ultrafast 4-D imaging, the new UEC technique allows researchers to "film" the atomic mechanism behind the recording process in memories based on phase change materials.

Credit: Jianbo Hu, Giovanni M. Vanacore, and Ahmed H. Zewail

By shedding light on the fundamental physical processes involved in data storage, the work may lead to better, faster computer memory systems with larger storage capacity. The research, done in the laboratory of Ahmed Zewail, Linus Pauling Professor of Chemistry and professor of physics, will be published in the July 28 print issue of the journal ACS Nano.

When the laser light interacts with a phase-change material, its atomic structure changes from an ordered crystalline arrangement to a more disordered, or amorphous, configuration. These two states represent 0s and 1s of digital data.

"Today, nanosecond lasers--lasers that pulse light at one-billionth of a second--are used to record information on DVDs and Blu-ray disks, by driving the material from one state to another," explains Giovanni Vanacore, a postdoctoral scholar and an author on the study. The speed with which data can be recorded is determined both by the speed of the laser--that is, by the duration of each "pulse" of light--and by how fast the material itself can shift from one state to the other.

Thus, with a nanosecond laser, "the fastest you can record information is one information unit, one 0 or 1, every nanosecond," says Jianbo Hu, a postdoctoral scholar and the first author of the paper. "To go even faster, people have started to use femtosecond lasers, which can potentially record one unit every one millionth of a billionth of a second. We wanted to know what actually happens to the material at this speed and if there is a limit to how fast you can go from one structural phase to another."

To study this, the researchers used their technique, ultrafast electron crystallography. The technique, a new development--different from Zewail's Nobel Prize-winning work in femtochemistry, the visual study of chemical processes occurring at femtosecond scales--allowed researchers to observe directly the transitioning atomic configuration of a prototypical phase-change material, germanium telluride (GeTe), when it is hit by a femtosecond laser pulse.

In UEC, a sample of crystalline GeTe is bombarded with a femtosecond laser pulse, followed by a pulse of electrons. The laser pulse causes the atomic structure to change from the crystalline to other structures, and then ultimately to the amorphous state. Then, when the electron pulse hits the sample, its electrons scatter in a pattern that provides a picture of the sample's atomic configuration as a function of the time.

With this technique, the researchers could see directly, for the first time, the structural shift in GeTe caused by the laser pulses. However, they also saw something more: a previously unknown intermediate phase that appears during the transition from the crystalline to the amorphous configuration. Because moving through the intermediate phase takes additional time, the researchers believe that it represents a physical limit to how quickly the overall transition can occur--and to how fast data can be recorded, regardless of the laser speeds used.

"Even if there is a laser faster than a femtosecond laser, there will be a limit as to how fast this transition can occur and information can be recorded, just because of the physics of these phase-change materials," Vanacore says. "It's something that cannot be solved technologically--it's fundamental."

Despite revealing such limits, the research could one day aid the development of better data storage for computers, the researchers say. Right now, computers generally store information in several ways, among them the well-known random-access memory (RAM) and read-only memory (ROM). RAM, which is used to run the programs on your computer, can record and rewrite information very quickly via an electrical current. However, the information is lost whenever the computer is powered down. ROM storage, including CDs and DVDs, uses phase-change materials and lasers to store information. Although ROM records and reads data more slowly, the information can be stored for decades.

Finding ways to speed up the recording process of phase-change materials and understanding the limits to this speed could lead to a new type of memory that harnesses the best of both worlds.

The researchers say that their next step will be to use UEC to study the transition of the amorphous atomic structure of GeTe back into the crystalline phase--comparable to the phenomenon that occurs when you erase and then rewrite a DVD.

Although these applications could mean exciting changes for future computer technologies, this work is also very important from a fundamental point of view, Zewail says.

"Understanding the fundamental behavior of materials transformation is what we are after, and these new techniques developed at Caltech have made it possible to visualize such behavior in both space and time," Zewail says.

###

The work is published in a paper titled "Transient Structures and Possible Limits of Data Recording in Phase-Change Materials." In addition to Hu, Vanacore, and Zewail, Xiangshui Miao and Zhe Yang are also coauthors on the paper. The work was supported by the National Science Foundation and the Air Force Office of Scientific Research and was carried out in Caltech's Center for Physical Biology, which is funded by the Gordon and Betty Moore Foundation.

Media Contact

Deborah Williams-Hedges
debwms@caltech.edu
626-395-3227

 @caltech

http://www.caltech.edu 

Deborah Williams-Hedges | EurekAlert!

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>