Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial intelligence techniques reconstruct mysteries of quantum systems

27.02.2018

New machine learning techniques can help experimentalists probe systems of particles exponentially faster than conventional, brute-force techniques

The same techniques used to train self-driving cars and chess-playing computers are now helping physicists explore the complexities of the quantum world.


A new technique feeds experimental measurements of a quantum system to an artificial neural network. The network learns over time and attempts to impersonate the quantum system's behavior. With enough data, scientists can fully reconstruct the quantum system.

Credit: Giuseppe Carleo/Flatiron Institute

For the first time, physicists have demonstrated that machine learning can reconstruct a quantum system based on relatively few experimental measurements. This method will allow scientists to thoroughly probe systems of particles exponentially faster than conventional, brute-force techniques. Complex systems that would require thousands of years to reconstruct with previous methods could be wholly analyzed in a matter of hours.

The research will benefit the development of quantum computers and other applications of quantum mechanics, the researchers report February 26 in Nature Physics.

"We have shown that machine intelligence can capture the essence of a quantum system in a compact way," says study co-author Giuseppe Carleo, an associate research scientist at the Center for Computational Quantum Physics at the Flatiron Institute in New York City. "We can now effectively extend the capabilities of experiments."

Carleo, who conducted the research while a lecturer at ETH Zurich, was inspired by AlphaGo. This computer program used machine learning to outplay the world champion of the Chinese board game Go in 2016. "AlphaGo was really impressive," he says, "so we started asking ourselves how we could use those ideas in quantum physics."

Systems of particles such as electrons can exist in lots of different configurations, each with a particular probability of occurring. Each electron, for instance, can have either an upward or downward spin, similar to Schrödinger's cat being either dead or alive in the famous thought experiment. In the quantum realm, unobserved systems don't exist as any one of these arrangements. Instead, the system may be thought of as being is in all possible configurations simultaneously.

When measured, the system collapses into one configuration, just like Schrödinger's cat is either dead or alive once you open its box. This quirk of quantum mechanics means that you can never observe the entire complexity of a system in a single experiment. Instead, experimentalists conduct the same measurements over and over until they can determine the state of the whole system.

That method works well for simple systems containing only a few particles. But "things get nasty with a lot of particles," Carleo says. As the number of particles increases, the complexity skyrockets. If only considering that each electron can have either spin up or down, a system of five electrons has 32 possible configurations. A system of 100 electrons has more than 1 million trillion trillion.

The entanglement of particles further complicates matters. Through quantum entanglement, independent particles become intertwined and can no longer be treated as purely separate entities even when physically separated. This entanglement alters the probability of different configurations.

Conventional methods, therefore, just aren't feasible for complex quantum systems.

Giacomo Torlai of the University of Waterloo and the Perimeter Institute in Canada, Carleo and colleagues circumvented these limitations by tapping machine learning techniques. The researchers fed experimental measurements of a quantum system to a software tool based on artificial neural networks. The software learns over time and attempts to mimic the system's behavior. Once the software ingests enough data, it can accurately reconstruct the complete quantum system.

The researchers tested the software using mock experimental datasets based on different sample quantum systems. In these tests, the software far surpassed conventional methods. For eight electrons, each with spin up or down, the software could accurately reconstruct the system with only around 100 measurements. For comparison, a conventional brute-force method required almost 1 million measurements to reach the same level of accuracy. The new technique can also handle much larger systems. In turn, this ability can help scientists validate that a quantum computer is correctly set up and that any quantum software would run as intended, the researchers suggest.

Capturing the essence of complex quantum systems with compact artificial neural networks has other far-reaching consequences. Center for Computational Quantum Physics co-director Andrew Millis notes that the ideas provide an important new approach to the center's ongoing development of novel methods for understanding the behavior of interacting quantum systems, and connect with work on other quantum physics-inspired machine learning approaches.

Besides applications to fundamental research, Carleo says that the lessons the team learned as they blended machine learning with ideas from quantum physics could improve general-purpose applications of artificial intelligence as well. "We could use the methods we developed here in other contexts," he says. "Someday we might have a self-driving car inspired by quantum mechanics, who knows."

###

ABOUT THE FLATIRON INSTITUTE

The Flatiron Institute is the research division of the Simons Foundation. Its mission is to advance scientific research through computational methods, including data analysis, modeling and simulation. The institute's Center for Computational Quantum Physics aims to develop the concepts, theories, algorithms and codes needed to solve the quantum many-body problem and to use the solutions to predict the behavior of materials and molecules of scientific and technological interest.

Media Contact

Anastasia Greenebaum
communications@simonsfoundation.org
212-524-6097

http://www.simonsfoundation.org 

Anastasia Greenebaum | EurekAlert!

Further reports about: QUANTUM artificial quantum mechanics quantum systems spin up

More articles from Physics and Astronomy:

nachricht The dispute about the origins of terahertz photoresponse in graphene results in a draw
25.04.2018 | Moscow Institute of Physics and Technology

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>