Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Sense for Infrared Light

19.01.2016

Laser physicists from the Max Planck Institute of Quantum Optics developed a measuring system for light waves in the near-infrared range.

Those who want to explore the microcosm need exact control over laser light. Only with its help is it possible to explore electron motion and to influence their behavior. Now, scientists at the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics (MPQ) and the Ludwig-Maximilians-Universität Munich (LMU) have developed a measuring system that is able to determine laser pulses with a wide bandwidth in the infrared spectrum of light precisely.


Through a lithium niobate crystal the laser physicists generate a few femtoseconds only infrared pulse. The waveform of the infrared light can be analyzed thoroughly by the researchers.

Picture: Thorsten Naeser

In the infrared wavelength range as short as 1200 nanometers this was only possible with the help of complex vacuum systems until now. The new system can be used for the precise generation of attosecond-duration light bursts for the exploration of atomic systems, as well as for the controlled dynamics of electrons in crystals.

Light is an elusive medium. Reaching close to 300.000 kilometers per second, light is not just incredibly fast, its electromagnetic field is quite a flutter: it oscillates roughly one million billion times per second. In recent years, however, researchers succeed in watching these oscillations more precisely and even controlling them. With this, light is an ultra fast tool for exploring the microcosm.

Infrared light pulses a few femtoseconds in duration serve in this context as a reliable light source for the generation of attosecond-light-pulses. With the help of attosecond-long light bursts, one is able to “photograph” electrons. On the other hand, one is also able to stimulate electronic motion in molecules and crystals with the help of infrared laser pulses and thereby change their electronic properties within femtoseconds. One femtosecond is one millionth of one billionth of a second; an attosecond is a thousand times shorter.

The better you know the form of the infrared laser-pulses, the more precise the experiments that can give us information about the phenomena inside crystals can be performed. Now laser physicists of the Laboratory for Attosecond Physics around Dr. Nicholas Karpowicz and Sabine Keiber at the Max-Planck Institute of Quantum Optics and the Ludwig-Maximillians University Munich have developed a measuring system, based on the electro-optic sampling technique developed for the far and middle infrared, that allows analyzing the exact waveform of light waves in the infrared range down to 1200 nanometers wavelength.

Within this measuring system, another five-femtosecond laser pulse scans the electromagnetic field of the infrared pulse. “A laser pulse consists of a coherent oscillation of the electromagnetic field” Nicholas Karpowicz says. “With this technology we are now not only able to define the envelope enclosing these oscillations, but also to directly analyze the shape of each of them.” In this wavelength range down to 1200 nanometers such a precise analysis was only possible in the context of an elaborate experimental system until now.

With this newly-acquired control over the near infrared pulses, the possibilities for exploring the microcosm broaden. This analysis method may also support further technological development in the field of data transmission with light. Since information transfer often uses a light wavelength of roughly 1550 nanometers, the precise measuring system presents opportunities to better understand light-matter interaction in the important telecom band. The system can also be used in basic research. The technique is able to improve the time-resolved infrared-spectroscopy for the examination of biological and chemical samples. Thorsten Naeser

Original publication:

Sabine Keiber, Shawn Sederberg, Alexander Schwarz, Michael Trubetskov, Volodymyr Pervak, Ferenc Krausz and Nicholas Karpowicz
Electro-optic sampling of near-infrared waveforms
Nature Photonics, 18. Januar 2016, doi: 10.1038/NHPHOTON.2015.269

Contact:

Dr. Nicholas Karpowicz
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 689
E-mail: nicholas.karpowicz@mpq.mpg.de

Sabine Keiber
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 658
E-mail: sabine.keiber@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>