Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A “pin ball machine” for atoms and photons

16.04.2015

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most promising tools for simulating and understanding the behaviour of many-body systems such as solid crystals – for example with respect to their electric or magnetic properties.


Figure: Illustration of the dielectric nano-photonic lattice for trapping atoms and making them interact. (Graphic: MPQ, Theory Division)

However, the implementation in free space has some limitations such as the distance between the atoms (around 400 nm) and the short range of the interactions. Now a team of theorists around Prof. Ignacio Cirac (MPQ, Garching) and Prof. Jeff Kimble (California Institute of Technology, Pasadena, USA) suggests a new set-up that integrates the advantages of ultracold atomic physics and nano-photonics to circumvent these limitations predicting lattice constants about ten times smaller than in a free space optical lattices and the possibility to mediate longer range interactions (Nature Photonics, AOP, 6 April 2015).

The authors use the opportunities provided by nano-engineered dielectrics, the so-called Photonic Crystals, to study both how to trap the atoms closer to each other and make them interact through the guided modes in the structure. As a consequence, the energy scales of the system are increased as well as the range of the interactions, being able to explore new forms of quantum many-body matter.

The basic idea is to take a thin dielectric slab the refractive index of which gets periodically modulated by either drilling holes or installing little cylindrical posts in a grid-wise pattern. By using a combination between optical and vacuum forces, the authors show how to make lattices with up to 50 nm, around ten times smaller than for optical lattices.

“With these subwavelength lattices we can investigate about the same quantum many-body phenomena as in free space optical lattices,” explains Dr. Alejandro González-Tudela, a scientist in the Theory Division of Prof. Cirac and first author of the publication. “But the difference and advantage of our proposed scheme is that the atoms are much closer to each other. That way we achieve higher tunneling rates and interaction energies for simulations of quantum many-body systems. And this implies that we can relax the cooling requirements of the atoms.”

But it is not only the smaller scale of the lattice which provides the possibility to do new kinds of physics. The geometry of the two-dimensional thin dielectric layer allows trapping and guiding the light that falls onto the slab. So an incoming photon interacts strongly with an atom, and then it bounces off. But it does not fly into space: the photon propagates through the waveguide and finds another atom to interact with, and then it goes to the next one and interacts.

“Our analysis show that we should be able to achieve atom-atom-interactions, where the interaction mechanism is not by atom hopping (as in free space optical lattices) but by exchange of photons”, Alejandro González-Tudela says. “The result is a two-dimensional solid where the atoms are held together and talk to each other not by phonons – as in regular matter – but by photons. This implies a qualitatively new domain for light-matter interactions, with the capability to ‘design’ the strength and the range of the interactions. We would gain access to a rich set of phenomena, including, for example, quantum magnetism or spin-spin-interactions mediated by photons. Olivia Meyer-Streng

Original Publication:
A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble
Subwavelength vacuum lattices and atom-atom interactions in photonic crystals
Nature Photonics, 6 April 2015, Advanced Online Publication

Contact:

Prof. Dr. J. Ignacio Cirac
Honorary Professor TU München and
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 32 905 -705/-736 / Fax: -336
E-mail: ignacio.cirac@mpq.mpg.de

Dr. Alejandro González-Tudela
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 32 905 -127
E-mail: alejandro.gonzalez-tudela@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>