Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Better Look at the Chemistry of Interfaces

04.12.2014

New X-ray Spectroscopy Technique at Berkeley Lab’s Advanced Light Source for the Study of Heterogeneous Interfaces

Researchers working at the Advanced Light Source (ALS) of the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have combined key features of two highly acclaimed X-ray spectroscopy techniques into a new technique that offers sub-nanometer resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells.


Image courtesy of Chuck Fadley)

SWAPPS measures the depth profiles of chemical elements with sub-nanometer resolution in the direction perpendicular to the interface, utilizing an X-ray standing wave field that can be tailored to focus on specific depths, i.e., near the surface or near the iron oxide interface.

This new technique is called SWAPPS for Standing Wave Ambient Pressure Photoelectron Spectroscopy, and it combines standing-wave photoelectron spectroscopy (SWPS) with high ambient pressure photoelectron spectroscopy (APPS).

“SWAPPS enables us to study a host of surface chemical processes under realistic pressure conditions and for systems related to energy production, such as electrochemical cells, batteries, fuel cells and photovoltaic cells, as well as in catalysis and environmental science,” says Charles Fadley, a physicist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and the University of California Davis, where he is a Distinguished Professor of Physics.

“SWAPPS provides all the advantages of the widely used technique of X-ray photoelectron spectroscopy, including element and chemical-state sensitivity, and quantitative analysis of relative concentrations of all species present. However with SWAPPS we don’t require the usual ultrahigh vacuum, which means we can measure the interfaces between volatile liquids and solids.”

Fadley is one of three corresponding authors of a paper describing SWAPPS in Nature Communications. The paper is titled “Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission.” The other two corresponding authors are
Hendrik Bluhm, with Berkeley Lab’s Chemical Sciences Division, a pioneer in the development of APPS, and Slavomír Nemšák, now with Germany’s Jülich Peter Grünberg Institute. (See below for the complete list of authors).

In terms of energies and wavelengths, X-rays serve as excellent probes of chemical processes. In the alphabet soup of X-ray analytical techniques, two in particular stand out for the study of chemistry at the interface where layers of two different materials or phases of matter meet. The first is SWPS, developed at the ALS by Fadley and his research group, which made it possible for the first time to selectively study buried interfaces in a sample with either soft or hard X-rays.

The second is APPS, also developed at the ALS by a team that included Bluhm, which made it possible for the first time to use X-ray photoelectron spectroscopy under pressures and humidities similar to those encountered in natural or practical environments.

“Heterogeneous processes at solid/gas, liquid/gas and solid/liquid interfaces are ubiquitous in modern devices and technologies but often difficult to study quantitatively,” Bluhm says. “Full characterization requires measuring the depth profiles of chemical composition and state with enhanced sensitivity in narrow interfacial regions at the nanometer scale. By combining features of SWPS and APPS techniques, we can use SWAPPS to measure the elemental and chemical composition of heterogeneous interfaces with sub-nanometer resolution in the direction perpendicular to the interface.”

Says Fadley, “We believe SWAPPS will deliver vital information about the structure and chemistry of liquid/vapor and liquid/solid interfaces, in particular the electrical double layer whose structure is critical to the operation of batteries, fuel cells and all of electrochemistry, but which is still not understood at a microscopic level.”

Fadley, Bluhm, Nemšák and their collaborators used their SWAPPS technique to study a model system in which a nanometer layer of an aqueous electrolyte of sodium hydroxide and cesium hydroxide was grown on an iron oxide (hematite) solid. The spatial distributions of the electrolyte ions and the carbon contaminants across the solid/liquid and liquid/gas interfaces were directly probed and absolute concentrations of the chemical species were determined. The observation of binding-energy shifts with depth provided additional information on the bonding and/or depth-dependent potentials in the system.

“We determined that the sodium ions are located close to the iron oxide/solution interface, while cesium ions are on average not in direct contact with the solid/liquid interface,” Bluhm says. “We also discovered that there are two different kinds of carbon species, one hydrophobic, which is located exclusively in a thin film at the liquid/vapor interface, and a hydrophilic carbonate or carboxyl that is evenly distributed throughout the liquid film.”

A key to the success of this study was the use of X-ray standing waves to excite the photoelectrons. A standing wave is a vibrational pattern created when two waves of identical wavelength interfere with one another: one is the incident X-ray and the other is the X-ray reflected by a mirror. Interactions between standing waves and core-level electrons reveal much about the depth distributions of each chemical species in a sample.

“Tailoring the X-ray wave field into a standing wave can be used to achieve greater depth sensitivity in photoelectron spectroscopy,” Fadley says. “Our combination of an oscillatory standing-wave field and the exponential decay of the photoelectron signal at each interface gives us unprecedented depth resolution.”

In their Nature Communications paper, the authors say that future time-resolved SWAPPS studies using free-electron laser or high-harmonic generation light sources would also permit, via pump-probe methods, looking at the timescales of processes at interfaces on the femtosecond time scale.

“The range of future applications and measurement scenarios for SWAPPS is enormous,” Fadley says.

This work was carried out at ALS Beamline 11.0.2, which is operated by Berkeley Lab’s Chemical Sciences Division and hosts two ambient-pressure photoemission spectroscopy endstations.

In addition to Fadley, Bluhm and Nemšák, other authors of the Nature Communications paper describing SWAPPS were Andrey Shavorskiy, Osman Karslioglu, Ioannis Zegkinoglou, Peter Greene, Edward Burks, Arunothai Rattanachata, Catherine Conlon, Armela Keqi, Farhad Salmassi, Eric Gullikson, See-Hun Yang and Kai Liu.

This research was primarily funded by the DOE Office of Science. The Advanced Light Source is a DOE Office of Science User Facility.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/

Contact Information
Lynn Yarris
Senior Writer, Media Coordinator
LCYarris@lbl.gov
Phone: 510-486-5375
Mobile: 510 717-9625

Lynn Yarris | newswise

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>