Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how judgment of sensory simultaneity may develop in the brain

06.06.2016

Most people encounter most things by sensing them in multiple ways. As we hear the words people speak, we also see their lips move. We smell, see and hear the onions as we chop them -- and we feel them with teary eyes.

It turns out that the ability to judge such sensory inputs as simultaneous, and therefore likely pertaining to the same thing, is something animal brains must develop through experience. A new study using tadpoles as a model organism shows how that appears to happen.


A new study in the model organism of tadpoles reveals how the brain develops the ability to sense when different sensory inputs are simultaneous rather than close in time.

Courtesy Carlos Aizenman

In making their findings, the scientists hope they can better understand how this sensory integration may sometimes go askew, perhaps contributing to disorders including autism. Some studies have suggested that difficulty merging sound and vision in some autism disorders may lead to language deficits.

"People have tried to distill how the brain detects this temporal coincidence," said study corresponding author Carlos Aizenman, a professor of neuroscience at Brown University. "We created a preparation where we could study how the different inputs are combined in a single cell and what types of brain circuits are involved."

In the study online in the journal eLife, Aizenman, lead author Daniel Felch and Bard College colleague Arseny Khakhalin were able to electrically stimulate the senses of vision and vibration in the brains of tadpoles at key stages of their neural development. They did so with very precise timing (small fractions of a second apart) and then tracked the responses of neurons in the optic tectum of the tadpole brains, where sensory information is processed and integrated. In humans and other mammals, the same part of the brain is called the superior colliculus, and neurons there do the same job.

The scientists found that sensory integration neurons in the optic tectum in relatively immature tadpole brains would become and remain excited by receiving two stimuli even if they were somewhat far apart in time. As the tadpole brains matured into later stages of development the same neural circuits would squelch their initial excitement if the sensory inputs came similarly far apart. More mature brains became better at determining when stimuli were nearly simultaneous and suppressing excitement when they weren't.

The results suggest that as tadpole brains mature, inhibitory neurons gain more sway in their balance with excitatory neurons, leading to more refined discrimination between sensory inputs that are truly simultaneous rather than merely proximate in time. In one experiment of the study, the scientists blocked inhibition. That stunted the tadpole brains' ability to discriminate.

Perturbing the process

The study illustrates, as others have as well, how sensory experiences shape the developing brain, Aizenman said.

"The brain normally starts out poorly wired," he said. "Activity in the brain sculpts the response of the brain to have a much more refined and fine-tuned function."

What's new is that the research also explains the mechanism by which that happens and shows that it can be derailed.

"The balance of excitation and inhibition in the brain is important for creating this type of temporal window," Aizenman said. "If you disrupt it, you get abnormal multisensory processing."

In future work, Aizenman said he hopes to do more of that: experiment with different ways of perturbing the process at different times during development to see what effect that may have on tadpole behaviors such as finding food or avoiding danger.

Tadpoles do not experience language, of course, but the results may still contribute, at a basic level, to generating hypotheses about how sensory integration may be affected in human development. Even though they develop somewhat differently and encounter different experiences, tadpoles and people share the same basic brain organization.

"What's important here are not the things that are different, but the things that are the same," Aizenman said. "The fundamental principles are conserved."

###

The National Science Foundation (grant IOS-1353044), the National Eye Institute (grant: 5T32-EY018080) and Brown University funded the research.

David Orenstein | EurekAlert!

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>