Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software detects at-risk tissue in record time following a stroke

29.10.2015

The FASTER software developed in Bern can detect within minutes the areas of the brain that will be left with long-term damage following a stroke. The previous version – BraTumIA for tumour segmentation – has been in use around the world since 2014.

In October of last year, a fully automatic computer program for the detection of brain tumours, which was developed in Bern, caused something of a stir on the international stage. The BraTumIA software only needs 10 minutes to analyse the tissue structures within a malignant tumour in very great detail.


(A+B) Conventional imaging (C) FASTER distinguishes salvageable tissue (blue) from brain tissue that will remain damaged (green) more precisely. Residual brain damage is marked red (D).

Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital

The self-learning system was developed and validated by biomedical engineers at the University of Bern's Institute for Surgical Technology and Biomechanics (ISTB) in collaboration with neuroradiology consultants at the Inselspital. The software has been used by more than 200 users in over 40 countries since its release (May 2014).

From brain tumour to stroke

Drawing on the analysis mechanisms and experiences associated with BraTumIA, the team has now developed a new type of software that identifies areas of the brain that might be at risk following a stroke. The really clever thing is how it only takes the computer 6 minutes both to detect any tissue affected by a direct loss of perfusion and to predict which areas of the brain will probably be left damaged after an intervention.

This information enables doctors to identify more precisely which tissue has a chance of complete recovery and then free this in a targeted manner using a catheter. The system bases its risk assessment on pre-learned realistic scenarios.

First place for independent Imaging

On 5 October, the new software known as FASTER achieved first place (for stroke-related imaging processes) in the international ISLES challenge held during the MICCAI international biomedical conference (www.miccai2015.org/). The software was developed by Dr Richard McKinley, a mathematician and academic based at the Support Center for Advanced Neuroimaging (SCAN) within the Neuroradiology Department at the Inselspital.

'The close collaboration between the neuroradiologists at SCAN and the engineers at ISTB was crucial to winning this competition,' explains McKinley. 'Our approach combines precise algorithms, modern imaging and clinical expertise.'

From bench to bedside

The system operates independently, is constantly learning at the same time, and can be 'trained' by experienced clinicians to characterise strokes at lightning speed using MRI images. This directly improves treatment for patients – one of the stated aims of the Swiss Institute for Translational and Entrepreneurial Medicine (sitem-insel AG) in Bern. The research group is already working on a new type of software for the analysis of inflamed brain tissue in multiple sclerosis patients.

Further information:

Prof. Roland Wiest, Support Center of Advanced Neuroimaging, Department of Diagnostic and Interventional Neuroradiology, Inselspital Bern, 031 632 36 73, Roland.Wiest@insel.ch.

Prof. Mauricio Reyes, Institute for Surgical Technology and Biomechanics, University of Bern, 031 631 59 50, mauricio.reyes@istb.unibe.ch.

Weitere Informationen:

http://Segmenting the ischemic penumbra: a spatial Random Forest approach with automatic threshold finding, Richard McKinley, Levin Häni, Roland Wiest, Mauricio Reyes.
http://www.isles-challenge.org/articles/mckir1.pdf

Monika Kugemann | Universitätsspital Bern
Further information:
http://www.insel.ch

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>