Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software detects at-risk tissue in record time following a stroke

29.10.2015

The FASTER software developed in Bern can detect within minutes the areas of the brain that will be left with long-term damage following a stroke. The previous version – BraTumIA for tumour segmentation – has been in use around the world since 2014.

In October of last year, a fully automatic computer program for the detection of brain tumours, which was developed in Bern, caused something of a stir on the international stage. The BraTumIA software only needs 10 minutes to analyse the tissue structures within a malignant tumour in very great detail.


(A+B) Conventional imaging (C) FASTER distinguishes salvageable tissue (blue) from brain tissue that will remain damaged (green) more precisely. Residual brain damage is marked red (D).

Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital

The self-learning system was developed and validated by biomedical engineers at the University of Bern's Institute for Surgical Technology and Biomechanics (ISTB) in collaboration with neuroradiology consultants at the Inselspital. The software has been used by more than 200 users in over 40 countries since its release (May 2014).

From brain tumour to stroke

Drawing on the analysis mechanisms and experiences associated with BraTumIA, the team has now developed a new type of software that identifies areas of the brain that might be at risk following a stroke. The really clever thing is how it only takes the computer 6 minutes both to detect any tissue affected by a direct loss of perfusion and to predict which areas of the brain will probably be left damaged after an intervention.

This information enables doctors to identify more precisely which tissue has a chance of complete recovery and then free this in a targeted manner using a catheter. The system bases its risk assessment on pre-learned realistic scenarios.

First place for independent Imaging

On 5 October, the new software known as FASTER achieved first place (for stroke-related imaging processes) in the international ISLES challenge held during the MICCAI international biomedical conference (www.miccai2015.org/). The software was developed by Dr Richard McKinley, a mathematician and academic based at the Support Center for Advanced Neuroimaging (SCAN) within the Neuroradiology Department at the Inselspital.

'The close collaboration between the neuroradiologists at SCAN and the engineers at ISTB was crucial to winning this competition,' explains McKinley. 'Our approach combines precise algorithms, modern imaging and clinical expertise.'

From bench to bedside

The system operates independently, is constantly learning at the same time, and can be 'trained' by experienced clinicians to characterise strokes at lightning speed using MRI images. This directly improves treatment for patients – one of the stated aims of the Swiss Institute for Translational and Entrepreneurial Medicine (sitem-insel AG) in Bern. The research group is already working on a new type of software for the analysis of inflamed brain tissue in multiple sclerosis patients.

Further information:

Prof. Roland Wiest, Support Center of Advanced Neuroimaging, Department of Diagnostic and Interventional Neuroradiology, Inselspital Bern, 031 632 36 73, Roland.Wiest@insel.ch.

Prof. Mauricio Reyes, Institute for Surgical Technology and Biomechanics, University of Bern, 031 631 59 50, mauricio.reyes@istb.unibe.ch.

Weitere Informationen:

http://Segmenting the ischemic penumbra: a spatial Random Forest approach with automatic threshold finding, Richard McKinley, Levin Häni, Roland Wiest, Mauricio Reyes.
http://www.isles-challenge.org/articles/mckir1.pdf

Monika Kugemann | Universitätsspital Bern
Further information:
http://www.insel.ch

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>