Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Punctuating messages encoded in human genome with transposable elements

04.08.2015

Since the classical studies of Jacob and Monod in the early 1960s, it has been evident that genome sequences contain not only blueprints for genes and the proteins that they encode, but also the instructions for a coordinated regulatory program that governs when, where and to what extent these genes and proteins are expressed.

The execution of this regulatory code is what allows for the creation of very different cell- and tissue-types from the same set of genetic instructions found in the nucleus of every cell. A recent study published in PNAS (July 27, 2015) shows that critical aspects of this regulatory program are encoded by genomic sequence elements that were previously thought to be mere "junk DNA" with no important functions.


A recent study published in Proceedings of the National Academy of Sciences and conducted by a team of researchers at the Georgia Institute of Technology and Aelan Cell Technologies has identified regulatory elements that allow for the creation of a diverse range of different cell types from different genetic information.

Credit: Aelan Cell Technologies

The vast majority of the human genome (~98% of the total genetic information) is not dedicated to encoding proteins, and this non-coding sequence was initially designated as "junk DNA" to underscore its lack of apparent function. Much of the so-called junk DNA in our genomes has accumulated over evolutionary time due to the activity of retrotransposable elements (RTEs), which are capable of moving (transposing) from one location to another in the genome and make copies of themselves when they do so. These elements have been considered as genomic parasites that exist by virtue of their ability to replicate themselves to high numbers within genomes without providing any beneficial function for the hosts in which they reside.

However, recent studies on RTEs have shown that they can in fact encode important functions, and much of their functional activity turns out to be related to how genomes are regulated. RTEs have been linked to stem cell function, tissue differentiation, cancer progression and ultimately to aging and age-related pathologies.

The study by Wang et al. recently published in PNAS (July 27, 2015) provides a new perspective on the role that RTE-derived sequences play in the precise execution of the human genome's regulatory program. This study found that one particular class of RTEs - Mammalian-wide Interspersed Repeats (MIRs) - can serve as genetic landmarks that help to target specific regulatory mechanisms to a large number of genomic sites and thereby lead to the coordinated regulation of the genes located nearby these sites.

This discovery was spearheaded by a team of computational biologists, led by Dr. King Jordan, Associate Professor and Director of the Bioinformatics Graduate Program at the Georgia Institute of Technology, who performed a "big data" analysis of massive datasets generated by hundreds of scientists from dozens of laboratories around the world working as part of the "Encyclopedia of DNA Elements" or ENCODE project. Their comprehensive and integrated data analysis, conducted by primarily by Dr. Jianrong Wang from Dr. Jordan's team, allowed them to pinpoint the location of thousands of individual MIR elements in the human genome that appear to function as so-called "boundary elements" in T lymphocyte cells of the immune system.

Boundary elements are epigenetic regulatory sequences that separate transcriptionally active regions of the human genome from transcriptionally silent regions in a cell-type specific manner. In so doing, these critical regulatory elements help to provide distinct identities to different cell types, although they all contain identical sets of information. The regulatory programs that underlie these cell- and tissue-specific functions and identities are based largely on genome packaging.

Genes that should not be expressed in a given cell or tissue are located in tightly packaged regions of the genome and inaccessible to the transcription factors that would otherwise turn them on. These boundary elements help to establish the geography of genome packaging by delineating the margins between silent regions in which genes are not expressed and active regions in which they are. In this critical role, boundary elements help to control the timing and extent of gene expression across the entire genome. As a result, defects in the organization of the genome by boundary elements are highly relevant for physiological and pathological processes.

"Our colleagues at the Georgia Institute of Technology were able to build upon our early discovery that another class of retrotransposon, the SINEB2 element, can provide boundary function at the mouse growth hormone locus," said Dr. Victoria Lunyak, CEO of Aelan Cell Technologies whose research team collaborated with Jordan lab on this project.

"We randomly picked a hand full of the MIR sequences predicted to serve as boundary elements by the Jordan lab and experimentally validated their activity in mouse cell lines and, with help of our Spanish collaborators, in Zebra fish upon embryonic development," Dr. Lunyak said. "This testing revealed that MIR sequences can serve as punctuation marks within our genome that enable cells to correctly read and comprehend the message transmitted by the genomic sequences."

"One thing that is particularly striking is the fact that these punctuation marks, as Victoria calls them, play a role that is deeply evolutionary conserved," said Dr. Jordan. "The same exact MIR sequences were able to function as boundaries in human CD4+ lymphocytes, in mouse cell models and in Zebrafish."

"This is an important discovery because the understanding of how RTEs punctuate messages encoded in the human genome can help researchers to develop treatments for a wide variety of human diseases, including aging," added Dr. Lunyak

Aging is characterized by a number of global changes in genome organization and function, and aging-associated defects in how our genome is packaged can have severe pathological consequences. In particular, age-related defects in genomic packaging can greatly increase the susceptibility of the genome to damage. Based on the discoveries published in their PNAS paper, the Jordan lab at Georgia Tech and the Lunyak team at Aelan Cell Technologies and their partner Nuclea Biotechnologies are now working towards the development of novel diagnostic and therapeutic strategies that target the critical roles of epigenetic regulators, such as human retrotransposons, in coordinating cell-type specific regulatory programs.

The study was published in the journal Proceedings of the National Academy of Sciences, USA.

Media Contact

Greg D'Agostino
greg@libertysquaregroup.com
617-695-0369

http://www.aelanct.com 

Greg D'Agostino | EurekAlert!

Further reports about: DNA data analysis epigenetic genomes genomic human genome junk DNA role sequence sequences transposable elements

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>