Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers use network science to help pinpoint source of seizures

29.01.2016

For the third of all epilepsy patients who don't respond to medication, an alternative is to locate the small cluster of neurons that act as the seed of a seizure's aberrant electrical activity and surgically remove it. Unfortunately, such surgeries often fail to bring any relief. The ability to reliably pinpoint the anatomical source of seizures, different for each patient, remains elusive.

Researchers at the University of Pennsylvania's School of Engineering and Applied Science and Perelman School of Medicine are looking for ways to refine this process by looking at networks of electrical activity in the brain just prior to the onset of a seizure.


'These new computational techniques allow us to see how different parts of the brain are communicating with one another as we go about our daily lives,' Bassett said. 'Critically, we can see how these communication patterns change as the brain changes its activity. This new ability offers a fundamental understanding of the functional relationships that drive a seizure.'

Credit: University of Pennsylvania

Using brain data crowdsourced from 22 epilepsy patients with implanted electrodes, the researchers have developed a series of algorithms that can predict where in the brain a seizure will originate and which groups of neurons it will likely spread to as it grows.

Such algorithms could provide a more objective way of identifying surgical targets, improving the success rate of such interventions.

... more about:
»Epilepsy »Medicine »electrodes »neurons »seizure

And because the data also provide for a generalizable model of how seizures evolve and spread through neural networks, they could also inform less invasive forms of treatments. An implantable device, for example, could monitor these warning signs and automatically deliver precise electrical impulses that would neutralize the seizure before it manifests.

The research was led by Danielle Bassett, the Skirkanich Assistant Professor of Innovation in Penn Engineering; Brian Litt, a professor of Neurology in Penn's Perelman School of Medicine and of Bioengineering in Penn Engineering; and Ankit Khambhati, a graduate student in the Litt Lab.

It was published in the journal PLOS Computational Biology.

"By mapping the network of activity in the brain and how it changes over time," Bassett said, "we aim to quantify the reconfiguration of this network that leads to different stages of a seizure."

"Using the novel algorithms we've generated to parse seizures into different states," Khambhati said, "we can answer questions such as, 'In which state is the seizure beginning?,' and 'In which state does it begin to spread?'"

At the core of the research team's findings is the International Epilepsy Electrophysiology Portal, founded by Litt; Zachary Ives, a professor and Markowitz Faculty Fellow in Penn Engineering's Department of Computer & Information Science; and Gregory Worrell, a neurologist at the Mayo Clinic. It was designed to collect direct brain recordings from epilepsy patients the world over.

Each patient in the study has between 80 and 100 electrodes implanted in regions of the brain that preliminary tests suggested were the sources of seizures. The electrodes indirectly record the voltage of brain activity in the neurons they sit above.

In this study, the researchers used recordings of 88 seizures from 22 patients.

"Localizing epileptic networks is one of the biggest challenges we have in treating medication-resistant epilepsy," said Litt, who is also director of the Penn Epilepsy Center. "Bringing Dr. Bassett and her team to work with us on this task has tremendous potential to help our patients."

Bassett's research interests involve applying insights from network science to the brain. In earlier work, she and colleagues developed a way of illustrating the functional connectivity between large groups of neurons by comparing the similarity of their activity over time. The similarity between the activation patterns of two large groups of neurons suggests the degree to which they are in communication.

"These new computational techniques allow us to see how different parts of the brain are communicating with one another as we go about our daily lives," Bassett said. "Critically, we can see how these communication patterns change as the brain changes its activity. This new ability offers a fundamental understanding of the functional relationships that drive a seizure."

Because the geographical progression of each patient's seizure is different, the researchers aimed to find some commonality in the network structure of the neuronal groups involved. While the location of the seizure's source might change from person to person, the way the aberrant electrical activity spreads from there may have generalizable patterns. Researchers could then work backwards from those patterns to better identify the source, or devise ways of interrupting that progression to stop a seizure in its tracks.

The researchers showed they could predict where a seizure would begin based on network structure alone.

"We show there is a high correspondence between certain topological features that are predictive of brain regions that initiate seizures," Khambhati said. "Specifically, we can use pre-seizure brain activity to determine the regions that are mostly densely interconnected, as they're most likely to be where the seizure starts."

Similar insights also showed the regions to which aberrant activity was likely to spread.

"Prior to and during the seizure," Khambhati said, "the region of the brain where the seizure originates remains densely interconnected, but what we are finding is that, as the seizure is beginning, the less densely connected regions are reconfiguring very rapidly. We believe that rapid reconfiguration is the signal that a seizure is about to manifest. "

The researchers believe algorithms based on these network relationships could immediately aid in pinpointing surgical targets in patients' brains and eventually inform implantable devices that can neutralize seizures before they spread.

###

Data hosted on the International Epilepsy Electrophysiology Portal is freely available to the public. Information on how to access or contribute data is available at IEEG.org.

Also contributing to the study were, from the Perelman School of Medicine, Kathryn Davis, an assistant professor of neurology; Stephanie Chen, an instructor of neurology; Timothy Lucas, an assistant professor of neurosurgery; and Brian Oommen, a resident/fellow.

The study was supported by the National Institutes of Health through awards R01- NS063039 and 1U24 NS 63930-01A1, Citizens United for Research in Epilepsy, the Mirowski Foundation, the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the Army Research Laboratory and the Army Research Office through contract numbers W911NF-10-2-0022 and W911NF-14-1- 0679, the National Institute of Mental Health through award 2-R01-DC-009209-11, the National Institute of Child Health and Human Development through award 1-R01-HD086888-01, the Office of Naval Research and the National Science Foundation through awards BCS-1441502 and BCS-1430087.

Media Contact

Evan Lerner
elerner@upenn.edu
215-573-6604

 @Penn

http://www.upenn.edu/pennnews 

Evan Lerner | EurekAlert!

Further reports about: Epilepsy Medicine electrodes neurons seizure

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>