Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers use network science to help pinpoint source of seizures

29.01.2016

For the third of all epilepsy patients who don't respond to medication, an alternative is to locate the small cluster of neurons that act as the seed of a seizure's aberrant electrical activity and surgically remove it. Unfortunately, such surgeries often fail to bring any relief. The ability to reliably pinpoint the anatomical source of seizures, different for each patient, remains elusive.

Researchers at the University of Pennsylvania's School of Engineering and Applied Science and Perelman School of Medicine are looking for ways to refine this process by looking at networks of electrical activity in the brain just prior to the onset of a seizure.


'These new computational techniques allow us to see how different parts of the brain are communicating with one another as we go about our daily lives,' Bassett said. 'Critically, we can see how these communication patterns change as the brain changes its activity. This new ability offers a fundamental understanding of the functional relationships that drive a seizure.'

Credit: University of Pennsylvania

Using brain data crowdsourced from 22 epilepsy patients with implanted electrodes, the researchers have developed a series of algorithms that can predict where in the brain a seizure will originate and which groups of neurons it will likely spread to as it grows.

Such algorithms could provide a more objective way of identifying surgical targets, improving the success rate of such interventions.

... more about:
»Epilepsy »Medicine »electrodes »neurons »seizure

And because the data also provide for a generalizable model of how seizures evolve and spread through neural networks, they could also inform less invasive forms of treatments. An implantable device, for example, could monitor these warning signs and automatically deliver precise electrical impulses that would neutralize the seizure before it manifests.

The research was led by Danielle Bassett, the Skirkanich Assistant Professor of Innovation in Penn Engineering; Brian Litt, a professor of Neurology in Penn's Perelman School of Medicine and of Bioengineering in Penn Engineering; and Ankit Khambhati, a graduate student in the Litt Lab.

It was published in the journal PLOS Computational Biology.

"By mapping the network of activity in the brain and how it changes over time," Bassett said, "we aim to quantify the reconfiguration of this network that leads to different stages of a seizure."

"Using the novel algorithms we've generated to parse seizures into different states," Khambhati said, "we can answer questions such as, 'In which state is the seizure beginning?,' and 'In which state does it begin to spread?'"

At the core of the research team's findings is the International Epilepsy Electrophysiology Portal, founded by Litt; Zachary Ives, a professor and Markowitz Faculty Fellow in Penn Engineering's Department of Computer & Information Science; and Gregory Worrell, a neurologist at the Mayo Clinic. It was designed to collect direct brain recordings from epilepsy patients the world over.

Each patient in the study has between 80 and 100 electrodes implanted in regions of the brain that preliminary tests suggested were the sources of seizures. The electrodes indirectly record the voltage of brain activity in the neurons they sit above.

In this study, the researchers used recordings of 88 seizures from 22 patients.

"Localizing epileptic networks is one of the biggest challenges we have in treating medication-resistant epilepsy," said Litt, who is also director of the Penn Epilepsy Center. "Bringing Dr. Bassett and her team to work with us on this task has tremendous potential to help our patients."

Bassett's research interests involve applying insights from network science to the brain. In earlier work, she and colleagues developed a way of illustrating the functional connectivity between large groups of neurons by comparing the similarity of their activity over time. The similarity between the activation patterns of two large groups of neurons suggests the degree to which they are in communication.

"These new computational techniques allow us to see how different parts of the brain are communicating with one another as we go about our daily lives," Bassett said. "Critically, we can see how these communication patterns change as the brain changes its activity. This new ability offers a fundamental understanding of the functional relationships that drive a seizure."

Because the geographical progression of each patient's seizure is different, the researchers aimed to find some commonality in the network structure of the neuronal groups involved. While the location of the seizure's source might change from person to person, the way the aberrant electrical activity spreads from there may have generalizable patterns. Researchers could then work backwards from those patterns to better identify the source, or devise ways of interrupting that progression to stop a seizure in its tracks.

The researchers showed they could predict where a seizure would begin based on network structure alone.

"We show there is a high correspondence between certain topological features that are predictive of brain regions that initiate seizures," Khambhati said. "Specifically, we can use pre-seizure brain activity to determine the regions that are mostly densely interconnected, as they're most likely to be where the seizure starts."

Similar insights also showed the regions to which aberrant activity was likely to spread.

"Prior to and during the seizure," Khambhati said, "the region of the brain where the seizure originates remains densely interconnected, but what we are finding is that, as the seizure is beginning, the less densely connected regions are reconfiguring very rapidly. We believe that rapid reconfiguration is the signal that a seizure is about to manifest. "

The researchers believe algorithms based on these network relationships could immediately aid in pinpointing surgical targets in patients' brains and eventually inform implantable devices that can neutralize seizures before they spread.

###

Data hosted on the International Epilepsy Electrophysiology Portal is freely available to the public. Information on how to access or contribute data is available at IEEG.org.

Also contributing to the study were, from the Perelman School of Medicine, Kathryn Davis, an assistant professor of neurology; Stephanie Chen, an instructor of neurology; Timothy Lucas, an assistant professor of neurosurgery; and Brian Oommen, a resident/fellow.

The study was supported by the National Institutes of Health through awards R01- NS063039 and 1U24 NS 63930-01A1, Citizens United for Research in Epilepsy, the Mirowski Foundation, the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the Army Research Laboratory and the Army Research Office through contract numbers W911NF-10-2-0022 and W911NF-14-1- 0679, the National Institute of Mental Health through award 2-R01-DC-009209-11, the National Institute of Child Health and Human Development through award 1-R01-HD086888-01, the Office of Naval Research and the National Science Foundation through awards BCS-1441502 and BCS-1430087.

Media Contact

Evan Lerner
elerner@upenn.edu
215-573-6604

 @Penn

http://www.upenn.edu/pennnews 

Evan Lerner | EurekAlert!

Further reports about: Epilepsy Medicine electrodes neurons seizure

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>