Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering music to sound better with cochlear implants

26.02.2016

When hearing loss becomes so severe that hearing aids no longer help, a cochlear implant not only amplifies sounds but also lets people hear speech clearly.

Music is a different story.

"I've pretty much given up listening to music and being able to enjoy it," says Prudence Garcia-Renart, a musician who gave up playing the piano a few years ago.


When hearing loss becomes so severe that hearing aids no longer help, a cochlear implant not only amplifies sounds but also lets people hear speech clearly.

Credit: Columbia University Medical Center

"I've had the implant for 15 years now and it has done so much for me. Before I got the implant, I was working but I could not use a phone, I needed somebody to take notes for me at meetings, and I couldn't have conversations with more than one person. I can now use a phone, I recognize people's voices, I go to films, but music is awful."

Cochlear implants are designed to process speech, which is a much simpler auditory signal compared with music. People with severe hearing loss also have lost auditory neurons that transmit signals to the brain.

It's not possible to tweak the settings of the implant to compensate for the loss of auditory neurons, says Anil Lalwani, MD, director of the Columbia Cochlear Implant Program. "It's unrealistic to expect people with that kind of nerve loss to process the complexity of a symphony, even with an implant."

Instead, Dr. Lalwani and members of Columbia's Cochlear Implant Music Engineering Group are trying to reengineer and simplify music to be more enjoyable for listeners with cochlear implants. "You don't necessarily need the entire piece to enjoy the music," Dr. Lalwani says. "Even though a song may have very complex layers, you can sometimes just enjoy the vocals, or you can just enjoy the instruments."

Right now the group is testing different arrangements of musical compositions to learn which parts of the music are most important for listener enjoyment. "It's not the same for somebody who has normal hearing," Dr. Lalwani says, "and that's what we have to learn."

Down the road, Dr. Lalwani thinks software will be able to take an original piece of music and reconfigure it for listeners or give the listener the ability to engineer their own music.

"Our eventual goal, though, is to compose music for people with cochlear implants based on what we've learned," Dr. Lalwani says. "Original pieces of music that will possibly have less rhythmic instruments, less reverb, possibly more vocals--something that is actually designed for them."

###

The study is titled, "Music Engineering as a Novel Strategy for Enhancing Music Enjoyment in the Cochlear Implant Recipient." The other contributors are: Gavriel D. Kohlberg, Dean M. Mancuso, and Divya A. Chari.

Anil K. Lalwani serves in the Medical Advisory Board of Advanced Bionics Corporation. Theauthors have no other funding, financial relationships, or conflict of interests to disclose.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Video: https://youtu.be/Jik7T4i5r0s

Newsroom link: http://newsroom.cumc.columbia.edu/?p=36082

Media Contact

Lucky Tran, Ph.D.
lucky.tran@columbia.edu
212-305-3689

 @ColumbiaMed

http://www.cumc.columbia.edu 

Lucky Tran, Ph.D. | EurekAlert!

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>