Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering music to sound better with cochlear implants

26.02.2016

When hearing loss becomes so severe that hearing aids no longer help, a cochlear implant not only amplifies sounds but also lets people hear speech clearly.

Music is a different story.

"I've pretty much given up listening to music and being able to enjoy it," says Prudence Garcia-Renart, a musician who gave up playing the piano a few years ago.


When hearing loss becomes so severe that hearing aids no longer help, a cochlear implant not only amplifies sounds but also lets people hear speech clearly.

Credit: Columbia University Medical Center

"I've had the implant for 15 years now and it has done so much for me. Before I got the implant, I was working but I could not use a phone, I needed somebody to take notes for me at meetings, and I couldn't have conversations with more than one person. I can now use a phone, I recognize people's voices, I go to films, but music is awful."

Cochlear implants are designed to process speech, which is a much simpler auditory signal compared with music. People with severe hearing loss also have lost auditory neurons that transmit signals to the brain.

It's not possible to tweak the settings of the implant to compensate for the loss of auditory neurons, says Anil Lalwani, MD, director of the Columbia Cochlear Implant Program. "It's unrealistic to expect people with that kind of nerve loss to process the complexity of a symphony, even with an implant."

Instead, Dr. Lalwani and members of Columbia's Cochlear Implant Music Engineering Group are trying to reengineer and simplify music to be more enjoyable for listeners with cochlear implants. "You don't necessarily need the entire piece to enjoy the music," Dr. Lalwani says. "Even though a song may have very complex layers, you can sometimes just enjoy the vocals, or you can just enjoy the instruments."

Right now the group is testing different arrangements of musical compositions to learn which parts of the music are most important for listener enjoyment. "It's not the same for somebody who has normal hearing," Dr. Lalwani says, "and that's what we have to learn."

Down the road, Dr. Lalwani thinks software will be able to take an original piece of music and reconfigure it for listeners or give the listener the ability to engineer their own music.

"Our eventual goal, though, is to compose music for people with cochlear implants based on what we've learned," Dr. Lalwani says. "Original pieces of music that will possibly have less rhythmic instruments, less reverb, possibly more vocals--something that is actually designed for them."

###

The study is titled, "Music Engineering as a Novel Strategy for Enhancing Music Enjoyment in the Cochlear Implant Recipient." The other contributors are: Gavriel D. Kohlberg, Dean M. Mancuso, and Divya A. Chari.

Anil K. Lalwani serves in the Medical Advisory Board of Advanced Bionics Corporation. Theauthors have no other funding, financial relationships, or conflict of interests to disclose.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Video: https://youtu.be/Jik7T4i5r0s

Newsroom link: http://newsroom.cumc.columbia.edu/?p=36082

Media Contact

Lucky Tran, Ph.D.
lucky.tran@columbia.edu
212-305-3689

 @ColumbiaMed

http://www.cumc.columbia.edu 

Lucky Tran, Ph.D. | EurekAlert!

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>