Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering music to sound better with cochlear implants

26.02.2016

When hearing loss becomes so severe that hearing aids no longer help, a cochlear implant not only amplifies sounds but also lets people hear speech clearly.

Music is a different story.

"I've pretty much given up listening to music and being able to enjoy it," says Prudence Garcia-Renart, a musician who gave up playing the piano a few years ago.


When hearing loss becomes so severe that hearing aids no longer help, a cochlear implant not only amplifies sounds but also lets people hear speech clearly.

Credit: Columbia University Medical Center

"I've had the implant for 15 years now and it has done so much for me. Before I got the implant, I was working but I could not use a phone, I needed somebody to take notes for me at meetings, and I couldn't have conversations with more than one person. I can now use a phone, I recognize people's voices, I go to films, but music is awful."

Cochlear implants are designed to process speech, which is a much simpler auditory signal compared with music. People with severe hearing loss also have lost auditory neurons that transmit signals to the brain.

It's not possible to tweak the settings of the implant to compensate for the loss of auditory neurons, says Anil Lalwani, MD, director of the Columbia Cochlear Implant Program. "It's unrealistic to expect people with that kind of nerve loss to process the complexity of a symphony, even with an implant."

Instead, Dr. Lalwani and members of Columbia's Cochlear Implant Music Engineering Group are trying to reengineer and simplify music to be more enjoyable for listeners with cochlear implants. "You don't necessarily need the entire piece to enjoy the music," Dr. Lalwani says. "Even though a song may have very complex layers, you can sometimes just enjoy the vocals, or you can just enjoy the instruments."

Right now the group is testing different arrangements of musical compositions to learn which parts of the music are most important for listener enjoyment. "It's not the same for somebody who has normal hearing," Dr. Lalwani says, "and that's what we have to learn."

Down the road, Dr. Lalwani thinks software will be able to take an original piece of music and reconfigure it for listeners or give the listener the ability to engineer their own music.

"Our eventual goal, though, is to compose music for people with cochlear implants based on what we've learned," Dr. Lalwani says. "Original pieces of music that will possibly have less rhythmic instruments, less reverb, possibly more vocals--something that is actually designed for them."

###

The study is titled, "Music Engineering as a Novel Strategy for Enhancing Music Enjoyment in the Cochlear Implant Recipient." The other contributors are: Gavriel D. Kohlberg, Dean M. Mancuso, and Divya A. Chari.

Anil K. Lalwani serves in the Medical Advisory Board of Advanced Bionics Corporation. Theauthors have no other funding, financial relationships, or conflict of interests to disclose.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Video: https://youtu.be/Jik7T4i5r0s

Newsroom link: http://newsroom.cumc.columbia.edu/?p=36082

Media Contact

Lucky Tran, Ph.D.
lucky.tran@columbia.edu
212-305-3689

 @ColumbiaMed

http://www.cumc.columbia.edu 

Lucky Tran, Ph.D. | EurekAlert!

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>