Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain changes linked to prematurity may explain risk of neurodevelopmental disorders

05.11.2014

Disturbances in the early stages of brain growth, such as preterm birth – when many of the brain's structures have not yet fully developed – appears to affect the brain's neuro-circuitry, which may explain premature babies' higher risk of neurodevelopmental disorders including ADHD and autism spectrum disorder.

Researchers led by Natasha Lepore, PhD, of The Saban Research Institute of Children's Hospital Los Angeles, have located significant alterations to specific surface regions of the brain. Described in a study published online this week by the journal Brain Structure and Function, their identification of neuroanatomical changes related to prematurity helps explain what brain structure and circuitry are affected, and may lead to designing effective prevention strategies and early interventional treatments for cognitive disabilities.

Using three-dimensional brain structural magnetic resonance imaging (MRI), Lepore and colleagues analyzed the structure and neural circuitry of two specific areas of the brain in 17 preterm and 19 term-born babies: the thalamus – the brain's relay station, critical to sending and receiving sensory information – and the putamen, part of an intricate circuit connecting to the brain's frontal lobe and involved in a number of different processes, most notably regulation of movement and learning.

While many studies have spotted alterations in various brain structures related to prematurity, this is the first study to link the structural abnormalities to specific neuro-circuitry, the communication pathways of the brain. To investigate these changes, the CHLA researchers performed a novel, combined analysis of the external shape and dimension of the surfaces of the thalamus and putamen, and compared the relative position of these structures to one another.

"We found that regional abnormalities of the thalamus are associated with alterations of the putamen, possibly due to disturbed development of shared frontal-subcortical connectivity," said first author Yi Lao, MS, of the Department of Radiology at CHLA. More specifically, she added, the significantly correlated regions in these two structures point to frontal and sub-cortical pathways that are essential to important functions such as attention, decision-making, planning, abstract reasoning and memory.

Lepore adds that, for the first time, they have demonstrated the feasibility of using measurements of these abnormalities in the brain of preterm newborns as potential indicators of risk for future cognitive and behavioral problems.

"The ability to identify structural signs of neurodevelopmental disease shortly after birth in premature infants could allow for early interventions, increasing the child's social and learning behaviors as they age," said Lepore.

Additional contributors include Yalin Wang, PhD, and Jie Shi, MS, Arizona State University; Rafael Ceschin, MS, Children's Hospital of Pittsburgh; Ashok Panigrahy, MD, Children's Hospital Los Angeles and Children's Hospital of Pittsburgh; and Marvin D. Nelson, MD, Children's Hospital Los Angeles. This work was supported by the National Institutes of Health through NIH grant 5K23-NS063371 and grants R21EB012177 and R21AG043760.

About Children's Hospital Los Angeles

Children's Hospital Los Angeles has been named the best children's hospital on the West Coast and among the top five in the nation for clinical excellence with its selection to the prestigious U.S. News & World Report Honor Roll. Children's Hospital is home to The Saban Research Institute, one of the largest and most productive pediatric research facilities in the United States. Children's Hospital is also one of America's premier teaching hospitals through its affiliation since 1932 with the Keck School of Medicine of the University of Southern California.

For more information, visit CHLA.org and follow us on ResearCHLAblog.org.

Media contact:

Debra Kain, dkain@chla.usc.edu
323-361-7628 or 323-361-1812

Debra Kain | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>