Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Water Could Have Flowed on Mars

19.11.2014

A new model suggests volcanic activity in Mars’ distant past spewed enough greenhouse gases to melt ice and warm the atmosphere

Why does the cold, barren surface of Mars contain geological features that appear to have been formed by flowing water: river valleys, lake basins, and deltas? A new model, published online in Nature Geoscience, suggests that sulfur spewed into the Martian atmosphere by ancient volcanoes could have periodically warmed the surface enough for the ice to melt and water to flow.


Weizmann Institute of Science

Satellite image of Olympus Mons on Mars, the largest volcano in the solar system at about three times the height of Mount Everest. Around 3.5 to 4 billion years ago, the release of volcanic gases, especially the greenhouse gas sulfur dioxide, may have warmed the surface of Mars episodically, melting the ice and thereby explaining the presence of geomorphological features indicative of the flow of water on the planet’s ancient surface.

Indeed, the signs of flowing water have been a puzzle, as the latest generation of climate models portrays Mars as an eternally ice-cold planet with all of its water frozen solid, especially early in its history, when the Sun was weaker than it is today.

Today, most of that water is locked in polar caps. Dr. Itay Halevy of the Weizmann Institute of Science’s Department of Earth and Planetary Sciences and Dr. James Head III of Brown University thought the answer might lie in the now dormant volcanoes on the planet’s surface, which could have played a larger role than previously thought in shaping its climate.

On Earth, volcanic emissions – sulfur compounds and ash – tend to cool the climate. But in the presumably dusty early atmosphere of Mars, the net effects might have been different. To understand their impact, Drs. Halevy and Head first calculated the size of ancient volcanic eruptions, based on the volcanic rock formations observed on the planetary surface today.

Their estimations show that the eruptions were violent – hundreds of times the force of the average eruption on Earth – and may have lasted up to a decade. This means that the amounts of gases spewed from the mouths of these volcanoes, from what we know of Earth’s eruptions, must have been enormous.

The team’s simulations showed large amounts of the greenhouse gas sulfur dioxide mixing into the atmosphere. But warming caused by the sulfur dioxide was thought to be outweighed by cooling due to the creation of sun-blocking sulfuric acid particles, which form as sulfur dioxide reacts in the atmosphere.

Drs. Halevy and Head showed that, in an atmosphere already as dusty as that of Mars, the sulfuric acid mostly forms thin coatings around particles of mineral dust and volcanic ash, subduing the added cooling. The net effect, according to the model the scientists created, was modest warming – just enough to allow water to flow at low latitudes on either side of the planet’s equator.

Liquid water may have flowed in these regions for tens to hundreds of years during and immediately after volcanic eruptions. The model suggests that during these brief, but intense, wet periods, the surface of the planet could have been carved by flowing rivers and streams.

Dr. Itay Halevy’s research is supported by the Sir Charles Clore Research Prize; the Carolito Stiftung; the estate of Olga Klein Astrachan; and the European Research Council.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. The Institute’s 3,800-strong scientific community engages in research addressing crucial problems in medicine and health, energy, technology, agriculture, and the environment. Outstanding young scientists from around the world pursue advanced degrees at the Weizmann Institute’s Feinberg Graduate School. The discoveries and theories of Weizmann Institute scientists have had a major impact on the wider scientific community, as well as on the quality of life of millions of people worldwide.

Contact Information
Jennifer Manning
Director, Science Content
jennifer@acwis.org
Phone: 212-895-7952

Jennifer Manning | newswise
Further information:
http://www.weizmann-usa.org/news-media/news-releases.aspx

More articles from Earth Sciences:

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>