SLM: New machine design and exposure concept facilitates scalable productivity and building space

Laboratory system: Processing head for scalable SLM machine designs. Fraunhofer ILT, Aachen,

Additive manufacturing via selective laser melting (SLM) has been successfully used to make prototypes and small-series production runs of predominantly compact components for a number of years now.

But users want the ability to increase productivity via higher build-up rates, and would like more flexibility in terms of available building space. Beyond this, it remains vitally important for series production on an industrial scale to have robust process engineering with reproducible component quality and the ability to monitor processes.

Experts are currently pursuing several approaches to increasing productivity and building space. Until now, productivity has mainly been boosted by using higher laser power in combination with optics systems that allow operators to adjust the beam diameter. Larger building spaces are currently achieved through the use of a movable single optical system or multiple parallel beam sources and scanner systems.

Systematic advantages of the new design

Scientists at Fraunhofer ILT used funding provided by the Cluster of Excellence »Integrative Production Technology for High-Wage Countries« to develop, design and build a new machine concept at their site in Aachen. Their design dispenses with scanner systems altogether and instead relies on a printer head featuring several individually controllable diode lasers that is moved using linear axes.

The advantage of multi-spot processing is that it means the system’s build-up rate can be increased significantly by adding a virtually unlimited number of beam sources – with no need for modifications to the system design, exposure control software or process parameters. The new plant design also makes it possible to increase building space simply by extending the travel lengths of the axis system and without changing the optical system.

In addition, the processing head has a local shielding gas flow system that guarantees a constant stream of shielding gas at each processing point, regardless of the size of the installation space. This is essential for achieving position-independent, reproducible component quality. The new design also allows process monitoring systems to be incorporated into the production system. These monitoring systems can also be set up in much simpler form than current coaxial systems allow.

Fraunhofer ILT at EuroMold 2014

Experts from Fraunhofer ILT will use a laboratory demonstrator to present their new SLM machine concept at the joint Fraunhofer booth C66 in Hall 11.

Contact

M.Sc. Florian Eibl
Rapid Manufacturing Group
Telephone +49 241 8906-193
florian.eibl@ilt.fraunhofer.de

Dr. Wilhelm Meiners
Head of Rapid Manufacturing Group
Telephone +49 241 8906-301
wilhelm.meiners@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de

Media Contact

Petra Nolis Fraunhofer-Institut

All latest news from the category: Trade Fair News

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors