A new Twist on bone development

A new research study reveals that formation of the cells that build bone tissue, called osteoblasts, is suppressed by a complicated inhibitory signal and that formation of the skeleton proceeds only after relief of the inhibition. This inhibitory signal is part of normal development, and without it, bone formation proceeds prematurely and abnormally.

A gene called Runx2 is the earliest and most specific indicator of osteoblast formation. However, Runx2 expression precedes the actual appearance of osteoblasts by about 4 days. Dr. Gerard Karsenty from Baylor College of Medicine in Houston, Texas, and colleagues were interested in determining what other regulatory molecules may be involved in this process during the delay period. They focused on proteins called Twist-1 and Twist-2 that are present in decreased amounts in people with Saethre-Chotzen syndrome, a disease characterized by overproduction of bone tissue. The researchers discovered that Twist proteins are found in Runx2-containing cells very early in development and that osteoblast development occurs only after Twist amounts decrease. Further, without Twist proteins, osteoblasts form too early and too much Twist inhibits osteoblast formation but does not influence that amount of Runx2 expression.

The researchers conclude that Twist proteins transiently inhibit osteoblast differentiation during formation of the skeleton by negatively regulating Runx2. According to Dr. Karsenty, “These results reveal an unanticipated complexity in osteoblast differentiation whose initiation is determined by the relief of an inhibition.” The researchers went on to identify a novel region of the Twist proteins, named the Twist box, and characterized this region as the specific site required for interaction between the two Twist proteins and Runx2. The authors point out that some Saethre-Chotzen patients have a mutation that results in a loss of the Twist box and that this mutation could easily explain the occurrence of the disease.

P. Bialek, B. Kern, X. Yang, M. Schrock, D. Sosic, N. Hong, H. Wu, K. Yu, D.M. Ornitz, E.N. Olson, M.J. Justice, and G. Karsenty: “A Twist Code Determines the Onset of Osteoblast Differentiation”

Published in Developmental Cell, Volume 6, Number 3, March 2004, pages 423-436.

Media Contact

Heidi Hardman EurekAlert!

More Information:

http://www.cell.com/

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors