Brain structure varies depending on how trusting people are of others, study shows

The ventromedial prefrontal cortex (yellow) is larger in those that tend to be more trusting of others compared to those that tend to be less trusting of others. Credit: Brian Haas/University of Georgia

The research may have implications for future treatments of psychological conditions such as autism, said the study's lead author Brian Haas, an assistant professor in the department of psychology. Each autism diagnosis is on a spectrum and varies, but some diagnosed with the condition exhibit problems trusting other people.

“There are conditions, like autism, that are characterized by deficits in being able to process the world socially, one of which is the ability to trust people,” Haas said.

“Here we have converging evidence that these brain regions are important for trust; and if we can understand how these differences relate to specific social processes, then we may be able to develop more targeted treatment techniques for people who have deficits in social cognition.”

Haas and his team of researchers used two measures to determine the trust levels of 82 study participants.

Participants filled out a self-reported questionnaire about their tendency to trust others. They also were shown pictures of faces with neutral facial expressions and asked to evaluate how trustworthy they found each person in the picture. This gave researchers a metric, on a spectrum, of how trusting each participant was of others.

Researchers then took MRI scans of the participants' brains to determine how brain structure is associated with the tendency to be more trusting of others. What researchers found, said Haas, were differences in two areas of the brain.

“The most important finding was that the grey matter volume was greater in the ventral medial prefrontal cortex, which is the brain region that serves to evaluate social rewards, in people that tended to be more trusting of others,” he said.

“Another finding that we observed was for a brain region called the amygdala. The volume of this area of the brain, which codes for emotional saliency, was greater in those that were both most trusting and least trusting of others. If something is emotionally important to us, the amygdala helps us code and remember it.”

Future studies may focus on how, and if, trust can be improved and whether the brain is malleable according to the type of communication someone has with another, he said.

###

The study was published in the journal NeuroImage. Haas' research team included undergraduate students Alexandra Ishak and Ian Anderson and graduate student Megan Filkowski.

The study on “The tendency to trust is reflected in human brain structure” is available online at http://www.sciencedirect.com/science/article/pii/S1053811914009902.

For more information on the UGA psychology department, see http://www.psychology.uga.edu. For more information on the UGA Gene-Brain-Social Behavior Lab, see http://www.psychology.uga.edu/gbsb/.

Media Contact

Brian Haas EurekAlert!

Alle Nachrichten aus der Kategorie: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at the Department of Energy’s Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak…

High-performance single-atom catalysts for high-temperature fuel cells

Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate…

New method allows precise gene control by light

A novel optical switch makes it possible to precisely control the lifespan of genetic “copies”. These are used by the cell as building instructions for the production of proteins. The…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close