Astrophysicists including Axel Weiß/MPIfR, have developed a new method of measuring the cosmic microwave background temperature only 880 million years after the Big Bang. It is the first time that the temperature of the radiation has been measured at such an early epoch. The prevailing cosmological model assumes that the Universe has cooled off since the Big Bang. The model also describes how the cooling process should proceed, but so far it has been directly confirmed only for relatively recent…
Making human-machine interaction more efficient and safer with the help of innovative 3D technologies – that was the goal of the “3Dsensation” research alliance. After eight years, the joint project funded by the German Federal Ministry of Research and Education (BMBF) with 45 million euros, is now coming to an end. Together, the partners from research, industry and business can look back on groundbreaking developments within the alliance – such as health monitoring for newborns, forgery-proof personal identification or merchandise…
A research team from the University of Jena and the Helmholtz Institute Jena sheds light on the best way to generate high-energy proton radiation using laser-plasma interaction. Proton therapy is a precise and effective treatment for tumours in sensitive areas of the body, such as the brain or the eyes, with the advantage that it spares healthy tissue. In this procedure, protons (positively charged particles) are strongly accelerated and directed with precision into the tumour tissue, which is destroyed in…
Researchers from the University of Basel have succeeded in forming a control loop consisting of two quantum systems separated by a distance of one meter. Within this loop, one quantum system — a vibrating membrane — is cooled by the other — a cloud of atoms, and the two systems are coupled to one another by laser light. Interfaces such as this allow different kinds of quantum systems to interact with one another even over relatively large distances and will…
Scientists discover a ‘super’ current on the perimeter of an exotic material. The Science Scientists recently discovered novel quantum materials whose charge carriers exhibit ‘topological’ features. Charge carriers are particles that transport electrical charges through a material. Topology is the study of the rules behind how shapes behave when they change. For example, a doughnut shape will still have a hole if it changes continuously from round to square or if it is twisted or stretched. Unless we do something…
Scientists uncover a microscopic mechanism that involves atomic vibrations in a quantum material that trap electrons. The Science This research sheds light on the mechanism behind how a special quantum material transitions from an electrical insulator to an electricity-conducting metal. Below a critical temperature, the subject material—lanthanum strontium nickel oxide—acts as an insulator due to the separation of introduced holes from the magnetic regions, forming “stripes.” As the temperature increases, the stripes fluctuate then “melt,” or disappear at 240 Kelvin…
A decade of astronomical research… An International team of astronomers led by researcher Toni Santana-Ros, from the University of Alicante and the Institute of Cosmos Sciences of the University of Barcelona (ICCUB), has confirmed the existence of the second Earth Trojan asteroid known to date, the 2020 XL5, after a decade of search. The results of the study have been published in the journal Nature Communications. All celestial objects that roam around our solar system feel the gravitational influence of…
Recently, the research team led by Prof. XU Guosheng from Institute of Plasma Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences demonstrated a novel “two-step” magnet design strategy to design advanced stellarator with standardized permanent magnet blocks and simple coils. The related achievement was published on Cell Reports Physical Science. In the recent two years, permanent magnet was introduced to help simplify the complicated 3D coils of the stellarators and some designs have been proposed. However, the previous magnet…
Burning plasma achieved in inertial fusion experiments for the first time. For more than 60 years, scientists have sought to understand and control the process of fusion, a quest to harness the vast amounts of energy released when nuclei in fuel come together. A paper published today in the journal Nature describes recent experiments that have achieved a burning plasma state in fusion, helping steer fusion research closer than it has ever been to its ultimate goal: a self-sustaining, controlled…
The University of Surrey and Space Power are tackling the problem of powering satellites in Low Earth Orbit (LEO) during their eclipse period when they cannot see the sun. By collaborating on a space infrastructure project, the joint team will develop new technology which uses lasers to beam solar power from satellites under solar illumination to small satellites orbiting closer to Earth during eclipse. The wireless, laser-based power beaming prototype will be the first developed outside of governmental organisations and…
A team mapping radio waves in the Universe has discovered something unusual that releases a giant burst of energy three times an hour, and it’s unlike anything astronomers have seen before. The team who discovered it think it could be a neutron star or a white dwarf—collapsed cores of stars—with an ultra-powerful magnetic field. Spinning around in space, the strange object sends out a beam of radiation that crosses our line of sight, and for a minute in every twenty,…
Interfacial diffusion of nanoparticles strongly affected by their shape and surface coating. Named for a Roman god, Janus particles refer to nanoparticles that possess surfaces with two or more distinct physical chemical properties. The special nanoparticles were introduced to the scientific community by 1991 Nobel Prize winner Pierre-Gilles de Gennes, who pointed out that “objects with two sides of different wettability have the unique advantage of densely self-assembling at liquid-liquid interfaces,” and consequentially, generating new colloidal structures. The resulting chemical…
ISTA professor Hausel publishes new theory about the fundamental mathematics underlying particle physics. Symmetries are fundamental to physics. Searching and analyzing them helped physicists to construct a theory of a whole zoo of particles making up our universe. Mathematicians however are focused on the abstract structures behind symmetries. Tamás Hausel, professor at the Institute of Science and Technology Austria (ISTA), together with Oxford scholar Nigel Hitchin, developed an elaborated theory around so-called Higgs bundles that sheds new light on problems…
24 Jan 2022, at 2 p.m. EST, Webb fired its onboard thrusters for nearly five minutes (297 seconds) to complete the final postlaunch course correction to Webb’s trajectory. This mid-course correction burn inserted Webb toward its final orbit around the second Sun-Earth Lagrange point, or L2, nearly 1 million miles away from the Earth. The final mid-course burn added only about 3.6 miles per hour (1.6 meters per second) – a mere walking pace – to Webb’s speed, which was all that…
Neutrons detect clogs non-destructively through the metal walls of pipelines. Industry and private consumers alike depend on oil and gas pipelines that stretch thousands of kilometers underwater. It is not uncommon for these pipelines to become clogged with deposits. Until now, there have been few means of identifying the formation of plugs in-situ and non-destructively. Measurements at the Research Neutron Source Heinz Maier-Leibnitz (FRM II) at the Technical University of Munich (TUM) now show that neutrons may provide the solution…
The design of new materials allows for either improved efficiency of known applications or totally new applications that were out of reach with the previously existing materials. Indeed, tens of thousands of conventional materials such as metals and their alloys have been identified over the last hundred years. A similar number of possible 2D materials have been predicted to exist, but as of now, only a fraction of them have been produced in experiments. One reason for this is the…