Amid a fast game in a vast venue, sports photography seeks to freeze motion and isolate small portions of space for special consideration. In the scientific world of the ultrafast and ultrasmall, stroboscopic effects are achieved with greatly attenuated laser pulses. The advent of laser light served up in femtosecond (or 10^-15 second) bursts has helped to elucidate the molecular world by freezing their vibrational and rotational motions. Scientists would of course like to instigate and monitor even
Physics gets strange when matter gets small. Take electrons orbiting the nucleus of an atom, for example. If they did so with the same dynamics by which planets orbit the sun, classical physics predicts the electrons would spiral toward the nucleus and crash into it in a fraction of a second. But that doesnt happen.
At very low temperatures, classical physics fails to explain phenomena at tiny scales. This is when quantum mechanics kicks in. Scientists are now chilling materials to ne
Austrian physicists report unusual light-metal interaction
A team under Professor Franz Aussenegg at the University of Graz in Austria is looking into unusual interactions between light and submicroscopic metal particles. The physicists’ findings represent a major advance towards the development of improved data storage media and optical sensors. They also confirmed theoretical predictions and merited publication in 13 international scientific journals. These are the impressive result
New imaging technology came to life when ESA’s StarTiger team captured the worlds first terahertz picture of a human hand.
“When we started last June we set an ambitious goal: to build in four months the first compact submillimetre-wave imager with near real time image capturing using state-of-the-art micro-machining technology,” said Peter de Maagt, ESA’s StarTiger Project Manager, “we reached this goal when the first terahertz images was taken in September.”
This breakthr
Solar Physicists at the Mullard Space Science Laboratory, University College London (MSSL-UCL) have discovered new clues to understanding explosions on the Sun.
Coronal mass ejections are violent explosions that can fling electrified gas [plasma] with a mass greater than Mount Everest towards the Earth with destructive consequences for satellites. They can originate from active regions on the Sun, long known to consist of forests of loops filled with plasma. These active loops are roughly 5
What goes on inside the heart of a star? Astronomers have been developing theories about stars inner workings for decades, but evidence to confirm the details of those theories has been sparse.
In research supported by NSF, University of Arizona astronomer Elizabeth Green and colleagues have found a new subset of “nearly-naked” stars that dim and brighten due to pulses in their cores. The stars, which may help unlock secrets of advanced stages of stellar evolution, are described in th
In recent years, scientists have discovered that the iridescence of various colorful creatures, from beetles to birds to butterflies, is often due to microscopic structures known as photonic crystals. Unlike pigments, which absorb or reflect certain frequencies of light as a result of their chemical composition, the way that photonic crystals reflect light is a function of their physical structure. That is, a material containing a periodic array of holes or bumps of a certain size may reflect blue
Researchers can now pinpoint direction of elusive subatomic particles key to understanding black holes, other cosmic events
A unique telescope buried in Antarctic ice promises unparalleled insight into such extraordinary phenomena as colliding black holes, gamma-ray bursts, the violent cores of distant galaxies and the wreckage of exploded stars.
An international team of physicists and astronomers, which includes UC Irvine researchers, report that the AMANDA telescope is cap
Nothing travels faster than light – it only takes 8 minutes for it to reach the Earth from the nearest star, the Sun, which is 150 million kilometres away. Now anyone can measure this speed – with chocolate stars and a microwave oven! The experiment is described on a new Institute of Physics web resource for teachers about fun physics demonstrations, inspired by the Physics on Stage 2 event.
The only equipment you need for this experiment is a microwave, a ruler and chocolate, cheese or any
Somewhere in the distant, old Universe, a population of stars hide undetected. They were the first to form after the birth of the Universe and are supposed to be far bigger in mass than any star visible today.
Astronomers know they must have been out there: only in this way could they solve the riddle of the origin and composition of stars in todays Universe. A couple of ESA missions will help astronomers search for this elusive population.
When the Universe formed, there was
In a milestone for global science collaboration, CERN took delivery today of the first US-built contribution to what will be the world’s highest-energy particle accelerator. The superconducting magnet, built at the US Brookhaven National Laboratory will become a key component of the Large Hadron Collider (LHC).
It is the first of several advanced accelerator elements the US will provide for the LHC under the terms of a 1998 agreement between CERN and the US Department of Energy (DOE)
Ultrafast lasers helping to make some of the shortest pulses of light ever seen in the UK will be at the heart of a new system to capture the movements of electrons as they whizz around the nucleus of atoms.
A UKP3.5 million research grant from the UK Research Councils’ Basic Technology Programme announced today has been awarded to a team of scientists to develop and build the first attosecond laser system capable of freeze-framing and controlling the motion of electrons.
Researcher
Subaru and VLT Join Forces in New Study of Virgo Galaxy Cluster
At a distance of some 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the zodiacal constellation of the same name (The Virgin) and is a large and dense assembly of hundreds of galaxies.
The “intracluster” space between the Virgo galaxies is permeated by hot X-ray emitting gas and, as has become clear recently, by a sparse “intracluster population of stars”.
So fa
To be able to detect gravitation waves in space, physicist have to measure truly minimal displacements: ten billion times smaller than the size of an atom. An improved superconducting sensor is a suitable candidate for this job, Martin Podt of the University of Twente now states in his PhD thesis. He has improved the sensitivity of a so-called ‘SQUID’ in way that it can be combined with a large ball-shaped gravitation detector. Podt succeeds in this by improving the sensitivity. He integrates the sen
Scientists who built and will control the instruments to investigate plasma changes around a comet describe their contribution to the ten year long mission at a pre-launch press briefing in London.
While the actual launch date for the European Space Agencys Rosetta mission has yet to be confirmed, the scientists, engineers and technicians behind the plasma-detecting instruments on board the spacecraft are all ready to begin the journey to comet Wirtanen they hope will return a r
Researchers at the University of Rochester have uncovered how giant magnetic fields up to a billion, billion miles across, such as the one that envelopes our galaxy, are able to take shape despite a mystery that suggested they should collapse almost before theyd begun to form. Astrophysicists have long believed that as these large magnetic fields grow, opposing small-scale fields should grow more quickly, thwarting the evolution of any giant magnetic field. The team discovered instead that the