Seven years of waiting comes to an end on 1 July when the Cassini spacecraft swoops closer to Saturn than any spacecraft previously.
Researchers at Imperial College London will be anxiously awaiting the first signals that all has gone to plan during a 90-minute engine burning procedure known as Saturn Orbit Insertion, or SOI, and that their mission to definitively map the magnetic fields around Saturn has successfully begun.
Never has a spacecraft been put in orbit around Saturn and
The experiment, titled “Quark Propagation through Cold QCD Matter,” began its run in December 2003 and wrapped up in early March. It probed Quantum Chromodynamics (QCD), a fundamental theory of particle physics that describes the interactions of quarks and gluons — the basic building blocks of matter. A property of QCD, called confinement, states that no quark can ever be found alone. Instead, quarks combine in pairs or triplets to make up larger particles. For instance, every proton and neutron cont
Hundreds of Maunder minimum stars are not, say UC Berkeley astronomers
A mysterious 17th century solar funk that some have linked to Europes Little Ice Age and to global climate change, becomes even more of an enigma as a result of new observations by University of California, Berkeley, astronomers.
For 70 years, from 1645 until 1714, early astronomers reported almost no sunspot activity. The number of sunspots – cooler areas on the sun that appear dark against the brig
The very first stars that formed early in the history of the universe were smaller than the massive giants implied by the results of a NASA research satellite, but still larger than the typical stars found in our galaxy today, according to a research team led by the University of Chicagos Jason Tumlinson.
“We have managed to reconcile within a single theory the two very different leading indicators of the nature of the first stars,” said Tumlinson, the Edwin Hubble Scientist in Astron
Images from NASAs new Spitzer Space Telescope have allowed researchers to detect the long sought population of “missing” supermassive black holes that powered the bright cores of the earliest active galaxies in the young universe. The discovery completes a full accounting of all the X-ray sources seen in one of the deepest surveys of the universe ever taken. The results were presented at the meeting of the American Astronomical Society in Denver, Colorado.
Mark Dickinson, of the Natio
A new instrument developed at the National Center for Atmospheric Research (NCAR) has captured landmark imagery of fast-evolving magnetic structures in the solar atmosphere. Steven Tomczyk (NCAR High Altitude Observatory) presented the images on Monday, May 31, at the annual meeting of the American Astronomical Society (AAS) in Denver.
Animations from the coronal multichannel polarimeter, or CoMP, reveal turbulent, high-velocity magnetic features spewing outward from the Suns surface.
Using a new computer model of the Sun, scientists have begun work on a groundbreaking forecast of the next cycle of sunspots. Mausumi Dikpati of the National Center for Atmospheric Research (NCAR) announced new research leading to an improved forecast of cycle 24 at the annual meeting of the American Astronomical Society (AAS) in Denver. Predicting features of the solar cycle may help society anticipate sunspots and associated solar storms, which can disrupt communications and power systems and exp
Some of the first data from a new orbiting infrared telescope are revealing that the Milky Way – and by analogy galaxies in general – is making new stars at a much more prolific pace than astronomers imagined.
The findings from NASAs Spitzer Space Telescope were announced today (May 27) at a NASA headquarters press briefing by Edward Churchwell, a University of Wisconsin-Madison astronomer and the leader of a team conducting the most detailed survey to date of our galaxy in infrared l
New percolation model may allow researchers to study biochemistry at the atomic level A new report in the May 24 Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences announces a mathematical model that will help researchers understand “cell signaling” and learn how single atoms travel along the circuitous pathways in a cell. The model is a new approach to look at percolation-the flow of a liquid or small particle through a porous material.
Astrophysical Virtual Observatory Proves To Be Essential Tool Active galaxies
Active galaxies are breathtaking objects. Their compact nuclei (AGN = Active Galaxy Nuclei) are so luminous that they can outshine the entire galaxy; “quasars” constitute extreme cases of this phenomenon, their powerful engine making them visible over a very large fraction of the observable Universe.
It is now widely accepted that the ultimate power station of these activities originates in sup
Quasars are the most brilliant of cosmic fireworks, shining out across billions of light-years of space. However, a recent study done at Gemini Observatory shows that they appear to blaze forth from humdrum galaxies in the early universe, and surprisingly, not from the giant or disrupted ones astronomers expected.
According to an international team of astronomers that studied an assortment of these luminous objects near the edge of the observable universe, these pedestrian galactic surroun
As the Cassini spacecraft hurtles toward a rendezvous with Saturn on June 30 (July 1, Universal Time), both Cassini and the Earth-orbiting Hubble Space Telescope snapped spectacular pictures of the planet and its magnificent rings.
Cassini is approaching Saturn at an oblique angle to the sun and from below the ecliptic plane. Cassini has a very different view of Saturn than Hubble’s Earth-centered view. For the first time, astronomers can compare equally sharp views of Saturn from two very
Work has started today (May 25th) on the construction of an optical fibre network which will connect five radio telescopes to the giant 76-m Lovell Telescope at Jodrell Bank Observatory, operated by The University of Manchester in rural Cheshire, allowing it to operate with vastly improved sensitivity.
This e-MERLIN network will operate as single radio telescope spanning 217 km, with unprecedented sensitivity provided by the enormous data rates carried by the optical fibres. The combination
This image of the Arsia Mons shield volcano was taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express.
This image shows a spectacular zone of collapse features on the southern flank of the giant shield volcano Arsia Mons (located at 239°E longitude and 10°S latitude, see the Mars map image).
The image was taken from an altitude of about 400 kilometres during orbit 263 of the Mars Express spacecraft.
The original image resolution was 20 metres pe
Like most creation stories, this one is dramatic: we began, not as a mere glimmer buried in an obscure cloud, but instead amidst the glare and turmoil of restless giants.
Or so says a new theory, supported by stunning astronomical images and hard chemical analysis. For years most astronomers have imagined that the Sun and Solar System formed in relative isolation, buried in a quiet, dark corner of a less-than-imposing interstellar cloud. The new theory challenges this conventional wisdom, a
Physicists at Lehigh University achieve supercontinuum generation in nonlinear fibers
Two physicists at Lehigh University have produced a rainbow of visible and invisible colors by focusing laser light in a specially designed optical fiber that confines light in a glass core whose diameter is 40 times smaller than that of a human hair.
Jean Toulouse, professor of physics, and Iavor Veltchev, research associate in Lehigh’s Center for Optical Technologies (COT), are among the