Intermetallics could be the key to faster jets and more efficient car engines. But these heat-resistant, lightweight compounds have stumped scientists for decades. Why do so many break so easily? A team from Brown University, Oak Ridge National Laboratory, and UES Inc. used the world’s most powerful electron microscope to see, for the first time, atomic details that may provide the answer for the most common class of intermetallics. Their results – which could open the door for new materials fo
Ultrathin superconducting wires can withstand stronger magnetic fields than larger wires made from the same material, researchers now report. This finding may be useful for technologies that employ superconducting magnets, such as magnetic resonance imaging.
As described in the Jan. 14 issue of the journal Physical Review Letters, researchers at the University of Illinois at Urbana-Champaign have created high-quality superconducting wires with molecular dimensions, and measured
The Hubble Space Telescope’s latest image of the star V838 Monocerotis (V838 Mon) reveals dramatic changes in the illumination of surrounding dusty cloud structures. The effect, called a light echo, has been unveiling never-before-seen dust patterns ever since the star suddenly brightened for several weeks in early 2002.
The illumination of interstellar dust comes from the red supergiant star at the middle of the image, which gave off a pulse of light three years ago, somewhat sim
An important step has been taken on the way to building the world’s most powerful neutron source-ESS-European Spallation Source-in Scania, the southern Swedish province. To strengthen international contacts, not least with the business community, a collaborative group has been established, including members from the Nordic countries and several research financiers. The group will be called ESS Innovation Forum.
A European research facility like ESS would be a key tool in strategi
Nanotechnologies which can artificially change the optical properties of materials to allow light to be trapped in solar cells could greatly reduce the cost of solar energy.
Research being carried out by the School of Electronics and Computer Science (ECS) at the University of Southampton is focusing on nanopatterning as the way to design effective solar panels. ‘By drawing features that are much smaller than the wavelength of light, photons can be confused into doing things t
Atoms at the ends of self-assembled atomic chains act like anchors with lower energy levels than the “links” in the chain, according to new measurements by physicists at the National Institute of Standards and Technology (NIST).
The first-ever proof of the formation of “end states” in atomic chains may help scientists design nanostructures, such as electrical wires made “from the atoms up,” with desired electrical properties.
The NIST experiments, described in the Feb. 4
Physicists at the University of California, San Diego have discovered a neural circuit in rats that could provide a powerful model for understanding a neurological condition known as blepharospasm—uncontrolled eye blinking that affects 50,000 people in the U.S. and leaves some patients functionally blind.
In the February 3 issue of the journal Neuron, the researchers, Quoc-Thang Nguyen and David Kleinfeld, describe the brain circuit, which coordinates sensory inputs and muscle acti
NASATMs Chandra X-ray Observatory has discovered two huge intergalactic clouds of diffuse hot gas. These clouds are the best evidence yet that a vast cosmic web of hot gas contains the long-sought missing matter – about half of the atoms and ions in the Universe.
Various measurements give a good estimate of the mass-density of the baryons – the neutrons and protons that make up the nuclei of atoms and ions – in the Universe 10 billion years ago. However, sometime during the las
Found: 7 percent of the mass of the universe. Missing since: 10 billion years ago.
Consider one more astronomical mystery solved. Scientists have located a sizeable chunk of the universe that seemed to be missing since back when the stars first formed. It’s floating in super-hot rivers of gas, invisible to the naked eye, surrounding galaxies like our own. And a completely different kind of mystery matter — dark matter — may have put it there. The results appear in the curren
Cardiff experts key role in space telescope mission
Experts at Cardiff University, UK, are designing and building highly sophisticated equipment, which will travel deep into space to enable scientists to look back in time to observe the formation of galaxies and stars. A team in the School of Physics and Astronomy is heading an international consortium, led by Cardiffs Professor Matt Griffin, to produce SPIRE. This is a three-colour camera and spectrometer, which will b
The third telescope aboard NASA’s Swift gamma-ray observatory, the Ultraviolet/Optical Telescope (UVOT) with key involvement from UK scientists at University College London’s Mullard Space Science Laboratory, has seen first light and is now poised to observe its first gamma-ray burst. The UVOT captured an image of the Pinwheel Galaxy, known by amateur astronomers as the ‘perfect’ face-on spiral galaxy. With the UVOT turned on the Swift observatory is fully operational. Swift’s two other instrume
The Swift satellites Ultraviolet/Optical Telescope (UVOT) has seen first light, capturing an image of the Pinwheel Galaxy, long loved by amateur astronomers as the “perfect” face-on spiral galaxy. The UVOT now remains poised to observe its first gamma-ray burst and the Swift observatory, launched into Earth orbit in November 2004, is now fully operational.
Swift is a NASA-led mission dedicated to the gamma-ray burst mystery. These random and fleeting explosions likely sign
100 years after Einsteins landmark work on Brownian motion, physicists have discovered a new concept of temperature that could be the key to explaining how ice and snow particles flow during an avalanche, and could lead to a better way of handling tablets in the pharmaceutical industry. This research is reported today in a special Einstein Year issue of the New Journal of Physics published jointly by the Institute of Physics and the German Physical Society (Deutsche Physikalische Gesellscha
100 years after Einstein’s landmark work on Brownian motion, physicists have discovered a new concept of temperature that could be the key to explaining how ice and snow particles flow during an avalanche, and could also lead to a better way of handling tablets in the pharmaceutical industry. This research is reported today in a special Einstein Year issue of the New Journal of Physics (www.njp.org) published jointly by the Institute of Physics and the German Physical Society (Deutsche Physikal
100 years after Einstein’s landmark paper, optical tweezer technology could confirm the theory of classical Brownian motion in details that Einstein missed when he first proposed it a century ago. This research is reported today in a special Einstein Year issue of the New Journal of Physics (www.njp.org) published jointly by the Institute of Physics and the German Physical Society (Deutsche Physikalische Gesellschaft).
“Optical tweezers” use a focused laser beam to trap and stud
University of California, Berkeley, physicists can now tune in to and hear normally inaudible quantum vibrations, called quantum whistles, enabling them to build very sensitive detectors of rotation or very precise gyroscopes. Quantum whistle
Hear the synchronized vibrations from a chorus of more than 4,000 nano-whistles, created when physicists pushed superfluid helium-4 though an array of nanometer-sized holes. Note that the pitch drops as the pressure drops.
A quantum w