Dusty disk around Fomalhaut makes ideal laboratory for studying planet formation
Astronomers zooming in on a nearby star with NASA’s Hubble Space Telescope have discovered unmistakable evidence of a planetary system: a perturbed dusty belt around the star that’s analogous to the vast Kuiper Belt of icy rocks encircling the sun.
While the discovery is expected to send astronomers scurrying to their telescopes to obtain direct images of a planet around the star, called F
Using color-changing plastic cylinders as a stand-in for a mass of granular material, Duke University physicists have created a computer-testable method to predict, particle-by-particle, how pushes, nudges and shoves at the edges transmit across large assemblages.
Masses of unpredictable granular particles — from the ice chunks that make up avalanche-prone snowfields to the coal in gigantic coal bins — can abruptly change behaviors with sometimes catastrophic results. Such sh
MIT scientists have brought a supercool end to a heated race among physicists: They have become the first to create a new type of matter, a gas of atoms that shows high-temperature superfluidity.
Their work, to be reported in the June 23 issue of Nature, is closely related to the superconductivity of electrons in metals. Observations of superfluids may help solve lingering questions about high-temperature superconductivity, which has widespread applications for magnets, sensors a
When comet Tempel 1 collides with a NASA space probe in the early morning hours of July 4, 2005, scientists at the Jet Propulsion Laboratory expect some holiday sizzle – a brilliant flash and a dramatic spray of debris.
This cosmic collision will create a crater exposing Tempel 1’s interior. Like all comets, Tempel 1 consists of the frozen remains of material that formed the solar system. But what, precisely, is this stuff? How is it put together? Peter Schultz, crater expert, wil
Science fiction writer Harlan Ellison once said that the most common elements in the universe are hydrogen and stupidity.
While the verdict is still out on the volume of stupidity, scientists have long known that hydrogen is indeed by far the most abundant element in the universe. When they peer through their telescopes, they see hydrogen in the vast clouds of dust and gas between stars –- especially in the denser regions that are collapsing to form new stars and planets.
Bu
Ohio State University physicists have obtained the first-ever experimental evidence of a particular quantum mechanical effect –- one that was theorized a decade ago.
The effect, called quantum monodromy (Greek for “once around”), relates in part to the behavior of molecules based on their atomic structure and vibrational frequencies. A better understanding of quantum monodromy could have implications in astronomy, atmospheric science, and biology.
The physicists reported t
Unsurpassed exciton distances, lifetimes may lead to new form of optical communication
When light hits a semiconductor material and is absorbed, its photons can become “excitons,” sometimes referred to as “heavy photons” because they carry energy, like photons, but have mass, like electrons. Excitons typically exist for only a short time–trillionths of a second–and travel only a few microns before turning back into photons, which are then emitted from the material.
In
ESA’s comet chaser Rosetta will take part in the one of world’s largest astronomical observation campaigns – the Deep Impact event – while on its cruise to Comet 69P/Churyumov-Gerasimenko. Rosetta will be watching from 29 June to 14 July 2005.
Deep Impact is a NASA mission to send a 370 kg copper ‘impactor’ probe to Comet 9P/Tempel 1 on 4 July 2005. Tempel 1 is a short-period comet, whose orbit runs between those of Mars and Jupiter. There is scientific interest in comets because th
Engineers have introduced a new magnetic shepherding approach for deftly moving or positioning the kinds of tiny floating objects found within organisms, in order to advance potential applications in fields ranging from medicine to nanotechnology.
The authors of a new research article said their method avoids pitfalls of using tiny light beams, electric currents or even a competing magnetic approach to micromanipulate so-called “colloidal” objects. “Biology is composed prima
Scientists have re-created one of natures most sensitive sound detectors – the tiny hairs found on body parts of crickets, which allow them to hear predators and make an escape before they get close enough to catch them. Published today (20th June 2005) in the Journal of Micromechanics and Microengineering, an Institute of Physics journal, this research will help scientists understand the complex physics that crickets use to perceive their surroundings and could lead to a new generation of
An international team of nuclear physicists has determined that particles called strange quarks do, indeed, contribute to the ordinary properties of the proton.
Quarks are subatomic particles that form the building blocks of atoms. How quarks assemble into protons and neutrons, and what holds them together, is not clearly understood. New experimental results are providing part of the answer.
The experiment, called G-Zero, was performed at Thomas Jefferson National Accelera
The quest for a single theory that unites all of the universes fundamental forces has thus far eluded physicists, but that has not stopped a team of them from clearing the way for nanotechnologists while they look for it.
The group, which includes Purdue Universitys Ephraim Fischbach, has recently completed research that improves our understanding of how tiny objects placed very close together can influence each other. Their experiment, which involves the behavior of
This image from SMART-1 was dedicated to the Cassini-Huygens mission team at the occasion of the European Geoscience Union conference in Vienna, April 2005, when new results from both missions were presented.
The crater Cassini on our Moon was named in honour of Jean-Dominique Cassini, one of the most important scientists of the 17th and 18th centuries. The joint NASA/ESA/ASI spacecraft, which is now in orbit around Saturn as part of the Cassini-Huygens mission, bears his name.
In research performed at the Department of Energys Jefferson Lab, nuclear physicists have found that strange quarks do contribute to the structure of the proton. This result indicates that, just as previous experiments have hinted, strange quarks in the protons quark-gluon sea contribute to a protons properties. The result comes from work performed by the G-Zero collaboration, an international group of 108 physicists from 19 institutions and was presented at a Jefferson Lab phy
Drilling holes on other planets and inventing novel textiles to secure large structures in space are just two of the 27 challenges that expert teams have been working on in the first year of ESA’s Innovation Triangle Initiative.
“By combining the creativity of the inventor, the needs of end users and the production experience of industry we have created strong drive and a very successful synergy to identify, demonstrate and verify novel ideas for future space technologies,” says Mar
By using DNA molecules as scaffolds, scientists have created superconducting nanodevices that demonstrate a new type of quantum interference and could be used to measure magnetic fields and map regions of superconductivity.
Researchers at the University of Illinois at Urbana-Champaign have fabricated and studied nanostructures consisting of pairs of suspended superconducting wires as tiny as 3 to 4 molecular diameters (typically 5 to 15 nanometers) in width. The team consisted of p