Bringing SETI science to community colleges SETI Institute Launches ARISE Lab, Bringing SETI and Radio Astronomy to Community Colleges The SETI Institute announced it will expand its pilot program funded through a grant from the Amateur Radio and Digital Communication (ARDC) Foundation now called ARISE Lab (arise.seti.org). This initiative brings SETI science to community colleges and provides hands-on training for community college instructors and students in astronomy, digital signal processing, and radio science. “Hands-on experiences are proven to improve student…
Another race to space is on, but the competitors aren’t reaching for the moon. Instead, multiple national agencies and private companies across the world are aiming for the edge of Earth’s atmosphere. Launching satellites into this very low Earth orbit (VLEO) environment — the altitude between 60 and 280 miles above Earth — could solve spacecraft crowding in traditional orbits, according to Sven Bilén, Penn State professor of engineering design, of electrical engineering and of aerospace engineering. Bilén said satellites in traditional…
Scientists and space explorers have been on the hunt to determine where and how much ice is present on the Moon. Water ice would be an important resource at a future lunar base, as it could be used to support humans or be broken down to hydrogen and oxygen, key components of rocket fuel. University of Hawai‘i at Mānoa researchers are using two innovative approaches to advance the search for ice on the Moon. ShadowCam scouts for surface ice Water…
Team from University of Stuttgart publishes results in Nature Physics “Our results add another chapter to the emerging field of skyrmion research,” proclaims Prof. Harald Giessen, head of the Fourth Physics Institute at the University of Stuttgart, whose group achieved this breakthrough. The team demonstrated the existence of “skyrmion bags” of light on the surface of a metal layer. A better understanding of physical phenomena Skyrmions are a mathematical description of vortex-like structures that help researchers better understand fundamental physical…
An international team led by the University of Geneva (UNIGE) has discovered the most distant spiral galaxy candidate known to date. This ultra-massive system existed just one billion years after the Big Bang and already shows a remarkably mature structure, with a central old bulge, a large star-forming disk, and well-defined spiral arms. The discovery was made using data from the James Webb Space Telescope (JWST) and offers important insights into how galaxies can form and evolve so rapidly in…
Discovery in a magnetic crystal could enable breakthroughs in quantum tech A team of Rice University researchers reported the first direct observation of a surprising quantum phenomenon predicted over half a century ago, opening pathways for revolutionary applications in quantum computing, communication and sensing. Known as a superradiant phase transition (SRPT), the phenomenon occurs when two groups of quantum particles begin to fluctuate in a coordinated, collective way without any external trigger, forming a new state of matter. The discovery…
‘Optical rotatum’ describes new structure of light Beams of light that can be guided into corkscrew-like shapes called optical vortices are used today in a range of applications. Pushing the limits of structured light, Harvard applied physicists in the John A. Paulson School of Engineering and Applied Sciences (SEAS) report a new type of optical vortex beam that not only twists as it travels but also changes in different parts at different rates to create unique patterns. The way the light behaves…
Although we know that supermassive black holes (millions of times the mass of our Sun) lurk at the centre of most galaxies, their very nature makes them difficult to spot and study. In contrast to the popular idea of black holes constantly ‘gobbling up’ matter, these gravitational monsters can spend long periods of time in a dormant, inactive phase. This was true of the black hole at the heart of SDSS1335+0728, a distant and unremarkable galaxy 300 million light-years away…
Despite its uniquely rich inventory of organic molecules, the moon may be able to support only a minuscule amount of biomass, a bioenergetic modeling study suggests. Titan, Saturn’s largest moon, is a strange, alien world. Covered in rivers and lakes of liquid methane, icy boulders and dunes of soot-like “sand,” its topography has long fascinated scientists and invited speculation on whether lifeforms might lurk beneath the moon’s thick, hazy atmosphere. An international team of researchers co-led by Antonin Affholder at…
Groundbreaking research by physicists at The City College of New York is being credited for a novel discovery regarding the interaction of electronic excitations via spin waves. The finding by the Laboratory for Nano and Micro Photonics (LaNMP) team headed by physicist Vinod Menon could open the door to future technologies and advanced applications such as optical modulators, all-optical logic gates, and quantum transducers. The work is reported in the journal Nature Materials. The researchers showed the emergence of interaction…
Warwick astronomers discover the first double white dwarf binary, destined to explode as type 1a supernova University of Warwick astronomers have discovered an extremely rare, high mass, compact binary star system only ~150 light years away. These two stars are on a collision course to explode as a type 1a supernova, appearing 10 times brighter than the moon in the night sky. Type 1a supernovae are a special class of cosmic explosion, famously used as ‘standard candles’ to measure distances…
The research team now believes that Aguas Zarcas is strong because it avoided collisions in space and did not have the cracks that weaken many meteorites. In the Pinball World of Asteroids, a Mudball Meteorite Avoided Collisions March 31, 2025, Mountain View, CA — In April 2019, rare primitive meteorites fell near the town of Aguas Zarcas in northern Costa Rica. In an article published online in the journal Meteoritics & Planetary Science, an international team of researchers describe the…
As part of its commitment to unraveling the universe’s mysteries through sustained support of the astrophysics community, the Flatiron Institute is securing the future of MESA (Modules for Experiments in Stellar Astrophysics), an open-source software suite that has transformed how researchers model the evolution of stars. As MESA’s creator, Bill Paxton, steps down, the Flatiron Institute’s Center for Computational Astrophysics (CCA) is stepping up to support MESA’s need for ongoing maintenance and continued development. CCA has hired Philip Mocz as…
Direct splitting: electrochemical process uses carbon dioxide to produce oxygen To mitigate global climate change, emissions of the primary culprit, carbon dioxide, must be drastically reduced. A newly developed process helps solve this problem: CO2 is directly split electrochemically into carbon and oxygen. As a Chinese research team reports in the journal Angewandte Chemie, oxygen could also be produced in this way under water or in space—without requiring stringent conditions such as pressure and temperature. Leafy plants are masters of…
The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and more than 40 other partner organizations across the country that created the Parker Solar Probe mission has been awarded the 2024 Robert J. Collier Trophy by the National Aeronautic Association (NAA). This annual award recognizes the most exceptional achievement in aeronautics and astronautics in America with respect to improving the performance, efficiency, and safety of air or space vehicles in the previous year….
The standard model of particle physics is our best theory of the elementary particles and forces that make up our world: particles and antiparticles, such as electrons and positrons, are described as quantum fields. They interact through other force-fields, such as the electromagnetic force that binds charged particles. To understand the behaviour of these quantum fields and with that our universe, researchers perform complex computer simulations of quantum field theories. Unfortunately, many of these calculations are too complicated for even…