First model to show how gas flows across universe into a supermassive black hole’s center. Galaxies’ spiral arms are responsible for scooping up gas to feed to their central supermassive black holes, according to a new high-powered simulation. Started at Northwestern University, the simulation is the first to show, in great detail, how gas flows across the universe all the way down to the center of a supermassive black hole. While other simulations have modeled black hole growth, this is…
Free electron laser insight… Recent research reveals a fundamental process of free electron lasing, opening new directions for the study and exploitation of laser-beam interactions. Free electron lasers (FELs) generate short-wavelength radiation with extreme brilliance on ultrafast timescales. Developed over the past three decades, FELs provide an important research tool for physics, biology, chemistry, and other areas. Unlike other synchrotron light sources, the amplification of FEL pulses comes from strong and continuous interaction of electromagnetic waves and relativistic electron beams…
Heavily enriched… The discovery of isotopes in the early 20th century marked a key moment in the history of physics and led to a much more refined understanding of the atomic nucleus. Isotopes are ‘versions’ of a given element of the periodic table that bear the same number of protons but a different number of neutrons, and therefore vary in mass. These differences in mass can radically alter certain physical properties of the atoms, such as their radioactive decay rates,…
In a study recently published in Nature Nanotechnology, a research group led by Prof. Du Haifeng and Dr. Tang Jin from High Magnetic Field Laboratory, Hefei Institutes of Physical Science (HFIPS), reported a scientific breakthrough after they found skyrmion bundles, a new family member of topological magnetic structures. With the help of Lorentz transmission electron microscopy (Lorentz-TEM), the research group clarified, for the first time, a type of magnetic quasiparticles with arbitrary topological charges Q, and then further realized current driven dynamic motion…
With precise mass measurements and highly accurate calculations, a team led by MPI for Nuclear Physics has now succeeded in independently testing the accuracy of an important method of neutrino physics, cryogenic microcalorimetry. The most precise measurements are required to determine the properties of neutrinos – those extremely light ghost particles that penetrate matter almost unhindered. How heavy are neutrinos? According to the standard model of elementary particle physics, they are massless, but since the discovery of neutrino oscillations (Nobel…
Part of the optimisation strategy experimentally confirmed / energy losses of the plasma reduced. One of the most important optimisation goals underlying the Wendelstein 7-X fusion device at Max Planck Institute for Plasma Physics (IPP) in Greifswald has now been confirmed. An analysis by IPP scientists in the journal Nature shows: In the optimised magnetic field cage, the energy losses of the plasma are reduced in the desired way. Wendelstein 7-X is intended to prove that the disadvantages of earlier…
A new way to probe exotic matter aids the study of atomic and particle physics. Physicists have created a new way to observe details about the structure and composition of materials that improves upon previous methods. Conventional spectroscopy changes the frequency of light shining on a sample over time to reveal details about them. The new technique, Rabi-oscillation spectroscopy, does not need to explore a wide frequency range so can operate much more quickly. This method could be used to…
Through the looking glass… In a new study based on the theoretical computation of atomic structures, researchers determine the mechanisms of ion diffusion in phosphate glass. Phosphate glass is a versatile compound that has generated interest for its use in fuel cells and as biomaterials for supplying therapeutic ions. P2O5–the compound that forms the structural network of phosphate glass, is made up of phosphorus, an element that can adopt many different bonding configurations in combination with oxygen. The physicochemical properties…
Combined theoretical and experimental work provides general quantitative limits to light–matter coupling in nanophotonic devices. The interplay between light and matter encompasses a stunning spectrum of phenomena, from photosynthesis to the captivating colours of rainbows and butterfly wings. Diverse as these manifestations may be, they involve very weak light–matter coupling — in essence, light interacts with the material system but does not change its basic properties. A distinctively different set of phenomena arises, however, for systems that are artifically engineered…
A new type of atomic sensor made of boron nitride is presented by researchers in “Nature Communications”. The sensor is based on a qubit in the crystal lattice and is superior to comparable sensors. An artificially created spin defect (qubit) in a crystal lattice of boron nitride is suitable as a sensor enabling the measurement of different changes in its local environment. The qubit is a boron vacancy located in a two-dimensional layer of hexagonal boron nitride and has an…
Brain-inspired electronics are the subject of intense research. Scientists from CNRS and the Ecole Normale Supérieure – PSL have theorized how to develop artificial neurons using, as nerve cells, ions to carry the information. Their work, published in Science on 6 August 2021, reports that devices made of a single layer of water transporting ions within graphene nanoslits have the same transmission capacity as a neuron. With an energy consumption equivalent to two bananas per day, the human brain can…
Emergent magnetic monopoles are observed in a class of magnetic materials called spin ices. However, the atomic scales and required low temperatures for their stability limit their controllability. This led to the development of 2D artificial spin ice, where the single atomic moments are replaced by magnetic nano-islands arranged on different lattices. The up-scaling allowed the study of emergent magnetic monopoles on more accessible platforms. Reversing the magnetic orientation of specific nano-islands propagates the monopoles one vertex further, leaving a…
Study demonstrates a long-predicted process for generating matter directly from light — plus evidence that magnetism can bend polarized photons along different paths in a vacuum. Scientists studying particle collisions at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy Office of Science user facility for nuclear physics research at DOE’s Brookhaven National Laboratory—have produced definitive evidence for two physics phenomena predicted more than 80 years ago. The results were derived from a detailed analysis of more than 6,000 pairs of…
Understanding the Sun’s magnetic dynamo could help predict solar weather. Scientists in Australia and in the USA have solved a long-standing mystery about the Sun that could help astronomers predict space weather and help us prepare for potentially devastating geomagnetic storms if they were to hit Earth. The Sun’s internal magnetic field is directly responsible for space weather – streams of high-energy particles from the Sun that can be triggered by solar flares, sunspots or coronal mass ejections that produce…
Physicists at the National Institute of Standards and Technology (NIST) have linked together, or “entangled,” the mechanical motion and electronic properties of a tiny blue crystal, giving it a quantum edge in measuring electric fields with record sensitivity that may enhance understanding of the universe. The quantum sensor consists of 150 beryllium ions (electrically charged atoms) confined in a magnetic field, so they self-arrange into a flat 2D crystal just 200 millionths of a meter in diameter. Quantum sensors such…
Topological quasiparticles with sophisticated spin textures are intriguing objects in particle physics and magnetic materials that exhibit exotic physics and have potential applications in information storage and processing. The most fundamental and exemplary topological spin texture is called the skyrmion, which is a nanoscale circular domain wall carrying a nonzero integer topological charge. The skyrmion texture was recently realized in structured optical fields, as a powerful tool to open new research directions of topological photonics. Since the first observation of…