Physicists demonstrate a dynamical one-parameter scaling, originally found in surface growth physics, in disordered quantum systems. In physics, “universality” refers to properties of systems that are independent of their details. Establishing the universality of quantum dynamics is one of the key interests of theoretical physicists. Now, researchers from Japan have identified such a universality in disordered quantum systems, characterized by a one-parameter scaling for surface roughness and entanglement entropy (a measure of quantum entanglement). Many-particle systems in the real world…
A novel topological edge soliton, developed for nonlinear photorefractive lattices, enables robust light beams promising for photonic technology. Diffraction is a natural property of light beams. It allows light to bend around obstacles. Because light serves as a carrier of information, some of the distorting effects of diffraction must be mitigated for many technological applications. Topological insulators, first unveiled in condensed matter physics, have attracted interest for over a decade. A photonic topological insulator can help ensure consistent propagation of…
Topology in optics and photonics has been a hot topic since 1890 where singularities in electromagnetic fields have been considered. The recent award of the Nobel prize for topology developments in condensed matter physics has led to renewed surge in topology in optics with most recent developments in implementing condensed matter particle-like topological structures in photonics. Recently, topological photonics, especially the topological electromagnetic pulses, hold promise for nontrivial wave-matter interactions and provide additional degrees of freedom for information and energy…
The demonstration that 2D heterostructures can be tuned electrically provides new perspectives for quantum simulation. Exploring the properties and behaviours of strongly interacting quantum particles is one of the frontiers of modern physics. Not only are there major open problems that await solutions, some of them since decades (think high-temperature superconductivity). Equally important, there are various regimes of quantum many-body physics that remain essentially inaccessible with current analytical and numerical tools. For these cases in particular, experimental platforms are sought…
Princeton-led study links magic-angle graphene and high-temperature superconductivity. The discovery in 2018 of superconductivity in two single-atom-thick layers of graphene stacked at a precise angle of 1.1 degrees (called ‘magic’-angle twisted bilayer graphene) came as a big surprise to the scientific community. Since the discovery, physicists have asked whether magic graphene’s superconductivity can be understood using existing theory, or whether fundamentally new approaches are required – such as those being marshalled to understand the mysterious ceramic compound that superconducts at…
The WASA detector at GSI/FAIR… With the WASA detector, a very special instrument is currently being set up at GSI/FAIR. Together with the fragment separator FRS, it will be used to produce and study so-called hypernuclei during the upcoming experiment period of FAIR Phase 0 in 2022. For this purpose, the assembly, which weighs several tons, is being transferred to the facility in a complex installation procedure. The scientific relevance of the planned experiments with hypernuclei is also shown by…
New filters could benefit data communication, quantum information processing and optical neural networks. Researchers report the development of frequency translating add/drop filters based on electro-optically modulated photonic molecules. The new class of filters could open important new avenues for on-chip light manipulation. Hayk Gevorgyan from Boston University, USA will present the research at the Frontiers in Optics + Laser Science Conference (FiO LS) all-virtual meeting, 01 – 04 November 2021. Gevorgyan’s presentation is scheduled for Tuesday, 02 November at 16:30 EDT (UTC…
It doesn’t get more accurate than this! Measuring air humidity is important in many areas. However, conventional sensors in hygrometers have so far not been able to determine a very low water vapor content. Physicists at the University of Duisburg-Essen (UDE) and the Yuri Gagarin Technical University in Russia have now developed a new sensor. It detects even the smallest amounts of water molecules that sink to its surface. The detector is based on highly conductive materials known as MXenes….
A team of physicists from Germany and Sweden working with first author Jens Christian Grauer from Heinrich Heine University Düsseldorf (HHU) has examined a special system of colloidal particles that they activated using laser light. The researchers discovered that self-propelling droplets, which they have named ‘droploids’, formed which contain the particles as an internal motor. They describe these droploids in more detail in the latest edition of the journal Nature Communications. According to an age-old saying, the whole is often…
Astronomers have used a planet-hunting satellite to see a white dwarf abruptly switching on and off for the first time. The researchers led by Durham University, UK, used NASA’s Transiting Exoplanet Survey Satellite (TESS) to observe the unique phenomenon. White dwarfs are what most stars become after they have burned off the hydrogen that fuels them. They are approximately the size of the Earth, but have a mass closer to that of the Sun. The white dwarf observed by the…
The central principle of superconductivity is that electrons form pairs. But can they also condense into foursomes? Recent findings have suggested they can, and a physicist at KTH Royal Institute of Technology today published the first experimental evidence of this quadrupling effect and the mechanism by which this state of matter occurs. Reporting today in Nature Physics, Professor Egor Babaev and collaborators presented evidence of fermion quadrupling in a series of experimental measurements on the iron-based material, Ba1−xKxFe2As2. The results…
Creating and studying radioactive molecules advances nuclear structure and fundamental symmetry studies. The Science An international team performed the world’s first measurement of how the size of the radium nucleus modifies the structure of molecules containing different radium isotopes. The research used a combination of lasers and ion traps at the Isotope mass Separator On-Line (ISOLDE) Radioactive Ion Beam Facility at CERN. The team studied the quantum structure of radium monofluoride (RaF) molecules. Quantum structure dictates the energy levels and how…
This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys. The results are useful for developing ultrafast data storage devices. New materials should make information processing more efficient, for example, through ultrafast spintronic devices that store data with less energy input. But to date, the microscopic mechanisms of ultrafast demagnetization are not fully understood. Typically, the process of demagnetization is studied by sending an ultrashort laser pulse to the sample, thereby heating it up, and then…
Services from all hyper-scale cloud providers like Microsoft are powered by massive datacenters that employ hundreds of thousands of servers, whose performance depends heavily on the quality of the network between them. Current datacenter networks include multiple layers of electrical packet switches interconnected through optical fibers. These systems require electrical-to-optical conversion, which increases cost and power overhead. To make things worse, growing data rates due to applications like AI and data analytics could concur with the slowdown of Moore’s law…
Probing the structures and properties of superionic ice. A layer of “hot,” electrically conductive ice could be responsible for generating the magnetic fields of ice giant planets like Uranus and Neptune. New work from Carnegie and the University of Chicago’s Center for Advanced Radiation Sources reveals the conditions under which two such superionic ices form. Their findings are published in Nature Physics. As all school children learn, water molecules are made up of two hydrogen atoms and one oxygen atom—H20….
PHENIX data validate approach for future studies of proton spin and structure. Scientists seeking to explore the teeming microcosm of quarks and gluons inside protons and neutrons report new data delivered by particles of light. The light particles, or photons, come directly from interactions of a quark in one proton colliding with a gluon in another at the Relativistic Heavy Ion Collider (RHIC). By tracking these “direct photons,” members of RHIC’s PHENIX Collaboration say they are getting a glimpse—albeit a blurry one—of gluons’ transverse…