University of Toronto technology could foil fraud with laser-sensitive dyes
Working with capsules of dye just a few billionths of a metre in diameter, researchers at University of Toronto and the advanced optical microscopy facility at Torontos Princess Margaret Hospital have created a new strategy for encrypting photographs, signatures and fingerprints on security documents.
“This technology will give security or customs authorities the confidence that documents are not fake,” says U of T chemistry professor Eugenia Kumacheva, who holds the Canada Research Chair in Advanced Polymer Materials. “It gives a very high level of data encryption and is relatively cheap to produce.”
A thin film of polymer material is produced from tiny three-layer capsules comprising three different dyes, Kumacheva explains. Each layer is sensitive to light at a particular wavelength – ultraviolet, visible or infrared. Using high-intensity irradiation, Kumacheva uses differing wavelengths to encrypt several different patterns onto a security document. To the naked eye, the identification document (a passport or smart card, for example) might reveal a photograph, but under other detection devices could reveal signatures or fingerprints.
The technology could offer a speedy alternative to waiting in long lineups at security checkpoints or government offices, says Kumacheva, who has secured a patent on the technology. A paper on the technology, which she says could be available within five years, was presented at a recent Particles 2003 meeting in Toronto.
###
CONTACT: Professor Eugenia Kumacheva, Department of Chemistry, 416-978-3576, ekumache@chem.utoronto.ca or Nicolle Wahl, U of T public affairs, 416-978-6974, nicolle.wahl@utoronto.ca
Media Contact
Further information:
http://www.utoronto.caAll news from this category: Process Engineering
This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).
Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.
Latest posts
Bringing atoms to a standstill: NIST miniaturizes laser cooling
It’s cool to be small. Scientists at the National Institute of Standards and Technology (NIST) have miniaturized the optical components required to cool atoms down to a few thousandths of…
Record-breaking laser link could help us test whether Einstein was right
Scientists from the International Centre for Radio Astronomy Research (ICRAR) and The University of Western Australia (UWA) have set a world record for the most stable transmission of a laser signal through…
Adaptive optics with cascading corrective elements
A cascaded dual deformable phase plate wavefront modulator enables direct AO integration with existing microscopes–doubling the aberration correction range and greatly improving image quality. Microscopy is the workhorse of contemporary…