INEEL, California groups unveil unique natural gas liquefaction facility


A first-of-its-kind, small-scale natural gas liquefaction facility designed by scientists at the U.S. Department of Energy’s Idaho National Engineering and Environmental Laboratory was unveiled today by Pacific Gas and Electric Company officials in Sacramento, Calif.

Other significant partners in the pioneering liquefied natural gas (LNG) facility effort include the California Energy Commission, Sacramento Air Quality Management District, SoCal Gas Company and South Coast Air Quality Management District.

The INEEL developed the patented technology used in the small-scale liquefier, and PG&E was responsible for installation. “The invention that was required to make this new liquefier is expected to revolutionize the liquefaction industry,” said Bruce Wilding, INEEL Natural Gas Products program manager.

One of the revolutionary aspects of the new technology is that it dramatically reduces an LNG plant’s size and cost. Standard LNG plants cost about $10 million to build, and occupy 5- to 6-acre sites. When this prototype technology is fully developed, plant construction cost is expected to be around $450,000, and only about 240 square feet of space will be required.

The liquefier is one achievement from DOE’s joint research and development with the growing clean energy technology industry. “This project is directed at obtaining relief from oil dependence by diversifying our transportation energy supply,” said Mike Anderson, DOE-Idaho Energy R&D project manager. Liquefied natural gas from this plant can be used as a clean, alternative fuel in heavy-duty trucks and transit buses.

“Pacific Gas and Electric Company is extremely proud to unveil this quantum-leap technology that is the pathway to a clean air future,” said Steve McCarthy, director of Customer Energy management for PG&E. Reducing emissions from heavy-duty vehicles is an essential part of achieving cleaner air. The use of clean-burning LNG is a key component to making this possible.

The new technology is designed to draw natural gas from an existing pipeline at a pressure letdown station, liquefy the natural gas and store it until it is used, trucked away or re-injected into the pipeline. Because of its community-friendly design and low cost, a number of facilities can easily be placed close to clean-fuel customers. Customers could include public entities such as city, county, transit, school district and waste removal fleets, as well as private fleets, such as those used by supermarkets and delivery companies.

The small-scale plant is easily transportable, offering numerous application advantages that no other technology can currently match, including providing emergency services to prevent gas service disruptions or allowing faster gas service recovery.

The plant will now begin a three- to six-month startup and operational testing phase.

###
The INEEL is a science-based, applied engineering national laboratory dedicated to supporting the U.S. Department of Energy’s missions in national security, energy security, environment and science. The INEEL is operated for the DOE by Bechtel BWXT Idaho, LLC.

INEEL media contact: Teri Ehresman, 208-526-7785, ehr@inel.gov (cell phone on Monday, June 24 – 208-520-6252) PG&E media contact: Jann Taber, 916-923-7053, JMTi@pge.com

Media Contact

Teri Ehresman EurekAlert!

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Perovskite solar cells soar to new heights

Metal halide perovskites have been under intense investigation over the last decade, due to the remarkable rise in their performance in optoelectronic devices such as solar cells or light-emitting diodes….

Blue hydrogen can help protect the climate

An international group of researchers led by the Paul Scherrer Institute and the Heriot-Watt University has carried out in-depth analyses of the climate impact of blue hydrogen. This is produced…

Genes associated with hearing loss visualised in new study

Researchers from Uppsala University have been able to document and visualise hearing loss-associated genes in the human inner ear, in a unique collaboration study between otosurgeons and geneticists. The findings…

Partners & Sponsors