Semiconductor physics: Taking control of spin

Sustaining a spin-polarized current, in which the spin (depicted as an arrow) of each electron (yellow) is aligned, is integral to advancing spintronic applications<br><br><br><br>Copyright : 2013 A*STAR Data Storage Institute<br>

Spintronics is a form of signal processing similar to that used in traditional electronics, but it takes advantage of a property of electrons known as spin. Spin is often visualized as an arrow about which the electron rotates, much like a top spinning around its axis. Generating a stream of electrons in which these 'arrows' are all parallel – a so-called spin-polarized current (see image) – is the foundation upon which spintronics is based. Imperfections in a material, however, can easily destroy polarization.

Simply applying an oscillating voltage across the device could help to maintain a spin-polarized current even in the presence of impurities, according to theoretical research by Seng Ghee Tan at the A*STAR Data Storage Institute, Singapore, and co©workers

Tan and his colleagues considered a two-dimensional electron gas: a system in which the electrons can move only in one plane. When a spin-polarized current flows through such a material, the spins interact with the electron's motion through an effect known as Rashba spin¨Corbit coupling. This makes the spins start to 'wobble' or precess: at first they point upwards but then point downwards, and this reduces the total spin polarization to zero. “We want to prolong the life span of a spin current in the channel by controlling the strength of the Rashba coupling,” says Tan. To this end, he and his team investigated a device, known as a spin-current rectifier, that lets a spin current flow with one particular polarization – upwards only, for example.

The researchers developed a simple mathematical equation that predicts the behavior of the spin current as an alternating voltage is applied across the device. Their model shows that when the frequency of the voltage is zero, the spin polarization goes back and forth as expected. “However, by increasing the frequency, we see an increasingly asymmetrical pattern of oscillation in favor of positive polarization,” explains Tan. “We call this a gradual process of rectification.”

Their approach can even suppress precessional motion entirely. When the external modulation frequency is much faster than the natural precessional frequency of the spins, known as the Larmor frequency, the spins have no time to change direction so remain pointing upwards. Consequently, the system maintains a spin-polarized current.

Once spin currents can be sustained, spintronics will have all the potential of electronics with the additional advantage of an extra degree of control. The spin-current rectifier investigated by Tan and his co-workers could therefore become a vital component in this future technology.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute
Associated links
Journal information
Ho, C. S., Jalil, M. B. A. & Tan, S. G. Sustainable spin current in the time-dependent Rashba system. Journal of Applied Physics 111, 07C327 (2012).

Media Contact

A*STAR Research Research asia research news

Alle Nachrichten aus der Kategorie: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Intermolecular rocking vibrations open up channels for ultrafast singlet fission

The search for new, more efficient materials to harvest solar energy is a major research focus around the world. Until now, silicon has been the material of choice for solar…

Comet Chury’s ultraviolet aurora

On Earth, auroras, also called northern lights, have always fascinated people. An international consortium involving the University of Bern has now discovered such auroras in the ultraviolet wavelength range at…

Extra stability for magnetic knots

Scientists from Kiel find a new mechanism for the stabilization of skyrmions Tiny magnetic whirls that can occur in materials – so-called skyrmions – hold high promises for novel electronic…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.