More than 20 percent efficiency: SCHOTT Solar sets new record for monocrystalline screen-printed solar cells

SCHOTT Solar has achieved yet another top performance. The solar company based in Mainz, Germany, has succeeded in manufacturing the world's first industrial size 156 mm x 156 mm monocrystalline screen-printed solar cell that achieves 20.2 percent efficiency.

This measurement was confirmed independently by Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany at the request of SCHOTT Solar. SCHOTT Solar AG has thus announced yet another major success in developing industry-oriented manufacturing processes for high-efficiency solar cells.

SCHOTT Solar laid the foundation for this outstanding achievement by developing new multicrystalline cell concepts that earned the company the world record for module efficiency of 17.6 percent in 2010. “We then decided to intensify our efforts to develop monocrystalline cells at the beginning of 2011. We were thus able to apply the know-how we had gained in more than three years of development work on multicrystalline solar cells to monocrystalline wafers in a consistent manner,” explains Dr. Axel Metz, Director of Solar Cell Development at SCHOTT Solar in emphasizing the special significance of this achievement.

Early attempts to transfer these industry-oriented processes to Czochralski silicon wafers already allowed the researchers to achieve cell efficiencies of well over 19 percent rather quickly. The team at SCHOTT Solar then concentrated on improving the front side of the cell in order to be able to break through the 20 percent mark.

Thanks to a very fruitful collaboration with the Schmid Group from Freudenstadt, Germany, they were able to combine the Schmid selective emitter technology that is already well-established in manufacturing with the passivated rear side contact (PERC) technology of SCHOTT Solar. Some of this research work has been supported by government funding. The result is now the world's first 156 mm x 156 mm screen-printed solar cell with 20.2 percent efficiency.

“The cell performance of 4.92 W that we were able to achieve has encouraged the entire team to begin working on optimizing the actual manufacturing process and to apply these results to the development of highly efficient modules,” says Klaus Wangemann, Head of Development at SCHOTT Solar AG. SCHOTT Solar will be releasing further details on how the new cell technology will be used in an actual product very shortly. This information will also be shared at the 26th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC). The EU PVSEC will be held in Hamburg from September 5 – 9 and SCHOTT Solar will be exhibiting at booth A37 in hall B5.

Pressekontakt:
SCHOTT AG
Christina Rettig
PR Manager
Tel: +49 (0)6131 – 66 4094
Fax: +49 (0)3641 – 28889 141
christina.rettig@schott.com

Fink & Fuchs Public Relations AG
Alexandra Mainka
Agentur
Tel: +49 (0)611 – 74131 86
Fax: +49 (0)611 – 74131 30
alexandra.mainka@ffpr.de
www.ffpress.net

Media Contact

Christina Rettig SCHOTT AG

Weitere Informationen:

http://www.schottsolar.de

Alle Nachrichten aus der Kategorie: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

2020 Arctic sea ice minimum at second lowest on record

NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder shows that the 2020 minimum extent, which was likely reached on Sept. 15, measured…

Dresden physicists develop printable organic transistors

Scientists at the Institute of Applied Physics at TU Dresden have come a step closer to the vision of a broad application of flexible, printable electronics. The team around Dr…

Researchers discover a mechanism that causes cell nuclei to grow

By far the most important process in cell development is how cells divide and then enlarge in order to multiply. A research team headed by Freiburg medical scientist Prof. Dr….

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close