Superconductors under strain

LaFeAsO sample mounted on the probe for Elasto-thermoelectric measurements
IFW Dresden

Elasto-thermoelectric transport technique reveals the interaction between structural and electronic properties of unconventional superconductors.

Superconductors are materials where current can flow without resistance below a characteristic temperature. Since its discovery at the beginning of the 20th century, this phenomenon has been matter of intense studies due to its enormous potential for applications, limited so far by the necessity of a cryogenic environment.

The main challenge is the realization of superconductivity at higher and higher temperature, which inevitably passes through the complete understanding of the microscopic mechanisms at its origin. Intriguingly, for many superconductors, called unconventional, this is still an unresolved puzzle. It is a widespread belief that the key to shed light on the unconventional superconductivity is the interplay among the crystal lattice, the orbital and the spin degrees of freedom.

In a recent paper, published by the journal Nature Quantum Materials, )the interaction between the structural and the electronic properties of an unconventional superconductor family is investigated, through an original elasto-thermoelectric transport technique. In this experiment, the electronic response of the sample is probed under the simultaneous application of a thermal gradient, a magnetic field and an infinitesimal mechanical strain. The reaction of the material to these tunable stressing parameters revealed that both spin and orbital fluctuations are fundamental ingredients to describe the physics of these materials, setting new bounds for the interpretative models.

This work, directly supported by the Deutsche Forschungsgemeinschaft, has been realized by scientists of the IFW Dresden (DE), in collaboration with the TU Dresden (DE), the University of Wuppertal (DE) and the CNR-SPIN Institute (IT).

Wissenschaftliche Ansprechpartner:

Dr. Federico Caglieris, f.caglieris@ifw-dresden.de

Originalpublikation:

F. Caglieris, C. Wuttke, X. C. Hong, S. Sykora, R. Kappenberger, S. Aswartham, S. Wurmehl, B. Büchner & C. Hess, Strain derivative of thermoelectric properties as a sensitive probe for nematicity, npj Quantum Materials volume 6, Article number: 27 (2021) DOI: https://doi.org/10.1038/s41535-021-00324-7

http://www.ifw-dresden.de

Media Contact

Dr. Carola Langer Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors