Quantum matter breakthrough: Tuning density waves

Illustration of a density wave. Made by Harald Ritsch.
Credit: Innsbruck University/EPFL

“Cold atomic gases were well known in the past for the ability to ‘program’ the interactions between atoms,” says Professor Jean-Philippe Brantut at EPFL. “Our experiment doubles this ability!” Working with the group of Professor Helmut Ritsch at the University of Innsbruck, they have made a breakthrough that can impact not only quantum research but quantum-based technologies in the future.

Density waves

Scientists have long been interested in understanding how materials self-organize into complex structures, such as crystals. In the often-arcane world of quantum physics, this sort of self-organization of particles is seen in ‘density waves’, where particles arrange themselves into a regular, repeating pattern or ‘order’; like a group of people with different colored shirts on standing in a line but in a pattern where no two people with the same color shirt stand next to each other.

Density waves are observed in a variety of materials, including metals, insulators, and superconductors. However, studying them has been difficult, especially when this order (the patterns of particles in the wave) occurs with other types of organization such as superfluidity – a property that allows particles to flow without resistance.

It’s worth noting that superfluidity is not just a theoretical curiosity; it is of immense interest for developing materials with unique properties, such as high-temperature superconductivity, which could lead to more efficient energy transfer and storage, or for building quantum computers.

Tuning a Fermi gas with light

To explore this interplay, Brantut and his colleagues, the researchers created a “unitary Fermi gas”, a thin gas of lithium atoms cooled to extremely low temperatures, and where atoms collide with each other very often.

The researchers then placed this gas in an optical cavity, a device used to confine light in a small space for an extended period of time. Optical cavities are made of two facing mirrors that reflect incoming light back and forth between them thousands of times, allowing light particles, photons, to build up inside the cavity.

In the study, the researchers used the cavity to cause the particles in the Fermi gas to interact at long distance: a first atom would emit a photon that bounces onto the mirrors, which is then reabsorbed by second atom of the gas, regardless how far it is from the first. When enough photons are emitted and reabsorbed – easily tuned in the experiment – the atoms collectively organize into a density wave pattern.

“The combination of atoms colliding directly with each other in the Fermi gas, while simultaneously exchanging photons over long distance, is a new type of matter where the interactions are extreme,” says Brantut. “We hope what we will see there will improve our understanding of some of the most complex materials encountered in physics.”

Other contributors

EPFL Center for Quantum Science and Engineering

Journal: Nature
DOI: 10.1038/s41586-023-06018-3
Article Title: Density-wave ordering in a unitary Fermi gas with photon-mediated interactions.
Article Publication Date: 24-May-2023

Media Contact

Nik Papageorgiou
Ecole Polytechnique Fédérale de Lausanne
n.papageorgiou@epfl.ch
Office: 41-216-932-105

Expert Contact

Jean-Philippe Brantut
EPFL
jean-philippe.brantut@epfl.ch
Office: +41 21 693 51 59
 @EPFL_en

www.epfl.ch

Media Contact

Nik Papageorgiou
Ecole Polytechnique Fédérale de Lausanne

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors