Magnetic field traces gas and dust swirling around supermassive black hole

The colour scale in the image shows the amount of infrared (heat) radiation coming from warm dust particles in the filaments and luminous stars within a light year of the Galactic centre. The position of the black hole is indicated by an asterisk. The lines trace the magnetic field directions and reveal the complex interactions between the stars and the dusty filaments, and the impact that they and the gravitational force has on them. The observations were made with the largest telescope in Europe, which allowed details of the fine structure in the magnetic fields to be revealed for the first time. Credit: E. Lopez-Rodriguez / NASA Ames / University of Texas at San Antonio

Black holes are objects with gravitational fields so strong that not even light can escape their grasp. The centre of almost every galaxy appears to host a black hole, and the one we live in, the Milky Way, is no exception. Stars move around the black hole at speeds of up to 30 million kilometres an hour, indicating that it has a mass of more than a million times our Sun.

Visible light from sources in the centre of the Milky Way is blocked by clouds of gas and dust. Infrared light, as well as X-rays and radio waves, passes through this obscuring material, so astronomers use this to see the region more clearly. CanariCam combines infrared imaging with a polarising device, which preferentially filters light with the particular characteristics associated with magnetic fields.

The new map covers a region about one light year on each side of the supermassive black hole. The map shows the intensity of infrared light, and traces magnetic field lines within filaments of warm dust grains and hot gas, which appear as thin lines reminiscent of brush strokes in a painting.

The filaments, several light years long, appear to meet close to the black hole (at a point below centre in the map), and may indicate where orbits of streams of gas and dust converge. One prominent feature links some of the brightest stars in the centre of the Galaxy. Despite the strong winds flowing from these stars, the filaments remain in place, bound by the magnetic field within them. Elsewhere the magnetic field is less clearly aligned with the filaments. Depending on how the material flows, some of it may eventually be captured and engulfed by the black hole.

The new observations give astronomers more detailed information on the relationship between the bright stars and the dusty filaments. The origin of the magnetic field in this region is not understood, but it is likely that a smaller magnetic field is stretched out as the filaments are elongated by the gravitational influence of the black hole and stars in the galactic centre.

Roche praises the new technique and the result: “Big telescopes like GTC, and instruments like CanariCam, deliver real results. We're now able to watch material race around a black hole 25,000 light years away, and for the first time see magnetic fields there in detail.”

The team are using CanariCam to probe magnetic fields in dusty regions in our galaxy. They hope to obtain further observations of the Galactic Centre to investigate the larger scale magnetic field and how it links to the clouds of gas and dust orbiting the black hole further out at distances of several light years.

Media Contact

Helen Klus
hklus@ras.ac.uk
44-020-729-23976

http://www.ras.org.uk/ras 

Media Contact

Helen Klus EurekAlert!

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Cyanobacteria: Small Candidates …

… as Great Hopes for Medicine and Biotechnology In the coming years, scientists at the Chair of Technical Biochemistry at TU Dresden will work on the genomic investigation of previously…

Do the twist: Making two-dimensional quantum materials using curved surfaces

Scientists at the University of Wisconsin-Madison have discovered a way to control the growth of twisting, microscopic spirals of materials just one atom thick. The continuously twisting stacks of two-dimensional…

Big-hearted corvids

Social life as a driving factor of birds’ generosity. Ravens, crows, magpies and their relatives are known for their exceptional intelligence, which allows them to solve complex problems, use tools…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close