Hall-effect uncovers hidden symmetry in spin-ice

Left: HoAgGe single crystal. Right: anomalous Hall effect as function of the magnetic field B during up- and down sweeps (red / black) with right- (yellow) and left (green) rotating magnetic moment configurations.
(c) Philipp Gegenwart / Universität Augsburg

Physicists from the University of Augsburg succeeded to distinguish chiral orders with similar magnetization but opposite sense of rotation through electrical measurements at low temperatures. This is relevant for fundamental research on complex magnets and with respect to possible applications for magnetic data storage. The results were published in the renowned journal Nature Physics.

Electrical currents and magnetic forces are directly liked to each other: current carrying cables create a circular magnetic field and vice versa a magnetic field deflects electrically charged particles perpendicular to the current and to the field direction. The latter phenomenon is called “Hall effect” in honor of its inventor Edwin Hall in the 19th century. Hall effect is used to probe electric and magnetic properties of metals. The “normal Hall effect” allows to determine the concentration of charger carriers and their mobility while an additional contribution labeled “anomalous Hall effect” arises in Magnets.

At the Institute of Physics at the University of Augsburg it has now been found that the anomalous Hall effect could reveal a hidden symmetry. “Despite an equal magnetization, two states show distinctly different anomalous Hall signals, a surprising and striking observation“, explains Philipp Gegenwart, Professor for Experimental Physics.

Right- and left-circulating magnetic pattern

The investigations were done with the magnetic metal HoAgGe, in which four years back, also at the chair of Prof. Gegenwart, special magnetic properties were discovered. The material features a triangular configuration of atomic electron spins of Holmium atoms. Since it is impossible to simultaneously fulfill all the pairwise interactions on each triangle, a magnetically frustrated state emerges. It features several energetically degenerate configurations per triangle and is called Kagome spin ice. The name indicates that the spins are located at the edges of corner shared triangles resembling braided Japanese “Kagome” baskets and furthermore that similar rules as in water ice determine the possible configurations of the magnetic moments.

In contrast to ordinary magnets, the magnetic moments in Kagome spin ice are not aligned along one direction but rather obey complex chiral pattern, i.e. with differing sense of rotation. They are created in an applied magnetic field at low temperatures and feature fractionalized magnetization plateaus at values of 1/3 and 2/3. The figure displays two of such pattern with similar energy and 1/3 of the saturation magnetization, each.

Electrical measurements uncover the difference – possible application for data storage

The study of the research group at the University of Augsburg systematically investigated and analyzed the anomalous Hall effect at low temperatures. Surprisingly, different values of the anomalous Hall effect were found for the two pattern of 1/3 magnetization, visible as red and black curves in the plot.

Modelling of the data revealed an underlying unique hidden symmetry: the combination of a 180° rotation and a distortion reversal is required for transforming one pattern into the other one. Conduction electrons scattering off the two different pattern get different curvatures of the phase of their wave functions and this leads to a difference in the anomalous Hall effect, despite a similar energy and magnetization of the two different pattern.

More generally, this observation indicates a new potential of measurements of the anomalous Hall effect in magnetically frustrated metals, for uncovering hidden symmetry and states through electrical measurements. “This may also be interesting with respect of permanent magnetic data storage at smallest atomic scale”, says Prof. Dr. Philipp Gegenwart. However, this requires the local addressing and selective switching of the sense of the rotation of these pattern.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Philipp Gegenwart
Dr. Kan Zhao
Experimentalphysik VI: Elektronische Korrelationen und Magnetismus
Telefon: +49 821 598 – 3650
E-Mail: philipp.gegenwart@physik.uni-augsburg.de
Medienkontakt

Originalpublikation:

K. Zhao, Y. Tokiwa, H. Chen und P. Gegenwart “Discrete degeneracies distinguished by the anomalous Hall effect in a metallic kagome ice compound”, Nature Physics (2024), www.nature.com/articles/s41567-023-02307-w

https://www.uni-augsburg.de/en/campusleben/neuigkeiten/2024/02/06/hall-effect-uncovers-hidden-symmetry-in-spin-ice/

Media Contact

Corina Härning Stabsstelle Kommunikation und Marketing

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Faster, more energy-efficient way to manufacture an industrially important chemical

Zirconium combined with silicon nitride enhances the conversion of propane — present in natural gas — needed to create in-demand plastic, polypropylene. Polypropylene is a common type of plastic found…

Energy planning in Ghana as a role model for the world

Improving the resilience of energy systems in the Global South. What criteria should we use to better plan for resilient energy systems? How do socio-economic, technical and climate change related…

Artificial blood vessels could improve heart bypass outcomes

Artificial blood vessels could improve heart bypass outcomes. 3D-printed blood vessels, which closely mimic the properties of human veins, could transform the treatment of cardiovascular diseases. Strong, flexible, gel-like tubes…

Partners & Sponsors