Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Research documents first instance of band-gap shrinkage in a semiconductor
A new study, published in todays issue of the journal Science, finds that the basic electrical properties of semiconducting carbon nanotubes change when they are placed inside a magnetic field. The phenomenon is unique among known materials, and it could cause semiconducting nanotubes to transform into metals in even stronger magnetic fields.
Scientists found that the “band gap” of semiconductin
Untersuchungen zur Herstellung von Kohlenstoff-Nanomaterialien, um einen massentauglichen Herstellprozess für diese neuartigen Materialien zu entwickeln, sind Ziel einer neuen Bayreuther Forschungskooperation.
Untersuchungen zur Herstellung von Kohlenstoff-Nanomaterialien, um einen massentauglichen Herstellprozess für diese neuartigen Materialien zu entwickeln, werden jetzt im Rahmen eines Forschungskooperation zwischen dem Lehrstuhl für Chemische Verfahrenstechnik der Fakultät für Angewan
Researchers at the Public University of Navarre and the Navarre Industry Association research centre have managed to increase by 30 to 500 % the superficial hardness and resistance to wear of metals and V5Ti alloys by means of applying nitrogen. These results could be of great use for different industrial applications in which these types of materials are employed such as in the aeronautic and biomedical sectors.
Economic losses
The wear and tear of tools and machine tools i
Wooley technique ’linchpin’ to success
Using a technique pioneered by Washington University in St. Louis chemist Karen Wooley, Ph.D., scientists have developed a novel way to make discrete carbon nanoparticles for electrical components used in industry and research.
The method uses polyacrylonitrile (PAN) as a nanoparticle precursor and is relatively low cost, simple and potentially scalable to commercial production levels. It provides significant advantages over existing
Australian scientists have developed a breakthrough low-cost, lightweight, concrete technology that is set to lower costs and speed up construction projects from residential homes to high-rise buildings.
HySSIL (High-Strength, Structural, Insulative, Lightweight) panels are manufactured using a new low energy, process developed by CSIRO Novel Materials & Processes. Dr Swee Liang Mak, who leads the HySSIL development team at CSIRO says, ’HySSIL is a revolutionary aerated cementitious (cement
For the last few years scientists at the Nanometer Consortium at Lund University have been able to make nanowires, tiny wires just a few millionths of a millimeter “thick” and made of semiconducting material of great potential in the electronics industry. Now they have managed to produce “nanotrees,” in fact tiny forests on the same scale.
This is described in an article (“Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events”) in the journal Nature Materials,