Innovative Spatial ALD system

The plasma-based Spatial ALD system can precisely coat even complex-shaped optics.
Photo: LZH

… at the LZH can precisely coat complex-shaped optics.

With a new Spatial ALD system, the Laser Zentrum Hannover e.V. (LZH) can now also uniformly coat complex-shaped optics. The innovative system achieves higher deposition rates than previously possible – and is of interest, among others, for applications in the automotive lighting or VR/AR sectors.

ALD (atomic layer deposition) technology can produce very thin, high-quality coatings. So far, the ALD process has been used primarily to produce thin functional layers in the semiconductor industry, for example. The new Spatial ALD system of the LZH, which was developed in cooperation with the company Beneq, now makes another application that is in high demand in industry economically viable. The scientists in the Optics Integration group at the LZH can use it to produce layer systems of uniform thickness much faster than before, for example on strongly curved and structured optics. Previously used methods, such as electron beam evaporation or ion beam sputtering, are severely limited in this respect.

Exciting use cases: Curved displays or lighting elements

The Spatial ALD system achieves high deposition rates in the production of ultra-thin coating systems for optics and enables the uniform coating of complexly shaped surfaces. This is of interest, for example, in the fields of automotive lighting or augmented reality (AR)/virtual reality (VR), where three-dimensionally shaped lighting elements are essential. As the system is plasma-based, it can operate with low temperatures below 100 degrees – making it particularly suitable for coating temperature-sensitive polymer optics, which are often used for displays.

The rotation principle enables high deposition rates

The system was developed by the Finnish company Beneq, a leader in ALD technology, in collaboration with the LZH. The ALD process is based on self-limiting chemical reactions between gaseous precursors and substrate surfaces. In systems commonly used at present, the process reactions are carried out one after the other, which necessitates a time-consuming gas exchange of the entire reaction chamber. This is different in the Spatial ALD system at the LZH: Here, the process cycles take place spatially separated. The system has four individual process chambers separated by pressure and nitrogen, in each, an ALD reaction step is completed. The substrates then rotate into the next chamber. In this way, the scientists achieve deposition rates that were previously only possible with other coating processes. This makes the process particularly economical and at the same time enables high throughput in optical coating.

System interesting for research and industrial customers

The scientists presented their first research results with the new system in a conference contribution at this year’s Photonics West. They are also currently working in the EUROSTARS collaborative project INTEGRA to coat optical diffraction gratings using the Spatial ALD system. In addition, the LZH is open to new challenges with the Spatial ALD system in the context of further industry and research collaborations.

Media Contact

Lena Bennefeld Kommunikation
Laser Zentrum Hannover e.V.

All latest news from the category: Machine Engineering

Machine engineering is one of Germany’s key industries. The importance of this segment has led to the creation of new university degree programs in fields such as production and logistics, process engineering, vehicle/automotive engineering, production engineering and aerospace engineering among others.

innovations-report offers informative reports and articles covering technologies such as automation, motion, power train, energy, conveyor, plastics, lightweight construction, logistics/warehousing, measurement systems, machine tools and control engineering.

Back to home

Comments (0)

Write a comment

Newest articles

Thermal insulation for quantum technologies

Thermal insulation is not only important for buildings, but also in quantum technologies. While insulation panels around a house keep the heat inside, quantum devices require insulation against heat from…

Spin keeps electrons in line in iron-based superconductor

Electronic nematicity, thought to be an ingredient in high temperature superconductivity, is primarily spin driven in FeSe finds a study in Nature Physics. Researchers from PSI’s Spectroscopy of Quantum Materials…

Scientists devise method to prevent deadly hospital infections without antibiotics

Novel surface treatment developed at UCLA stops microbes from adhering to medical devices like catheters and stents. A hospital or medical clinic might be the last place you’d expect to…

Partners & Sponsors