Pathogen strains competing for the same host plant change disease dynamics

A plant individual may be simultaneously infected by several pathogen strains, each aiming for optimal survival and reproduction. This competition may come at the cost of the well being of the host as higher host exploitation rates may increase host mortality.

However, killing the host should not be in the interest of the pathogen that requires living host tissue for survival.

Academy Research Fellow Anna-Liisa Laine working at the University of Helsinki has an explanation for this puzzling phenomenon. “Rapid host exploitation rates may be favored under coinfection where the strains are competing for the same limited resources. Strains that are playing fair lose to those most quickly exhaust the host,” she says.

Anna-Liisa Laine and her research group have been studying the interaction between host plant ribwort plantain, Plantago lanceolata, and its powdery mildew pathogen across hundreds of populations. They've discovered that coinfection by several strains of the same host plant are common in the wild with more than half of the pathogen populations supporting coinfection.

Experimental work coupled with field surveys of infection show that those host populations supporting coinfection suffer more severe epidemics than those where a single pathogen strain is present. A spore trapping experiment confirmed that the change in epidemiological dynamics is explained by higher spore production rate under coinfection.

These results confirm classic predictions of how infection dynamics can fundamentally change under coinfection. The study also highlights how important it is to account for coinfection – which can be spatially and temporally variable – when designing disease prevention efforts.

“Here we find that coinfection by different strains of the same pathogen species completely change infection dynamics. These results are really just scraping the surface of how complex infection dynamics can be under coinfection. In our current work we've discovered that ribwort plantain populations in Finland contain hundreds of viruses. We're now measuring how this within host disease community affects infection dynamics for a wide range of pathogen species,” says Anna-Liisa Laine.

Media Contact

Anna-Liisa Laine EurekAlert!

Further information:

http://www.helsinki.fi/university/

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

A little friction goes a long way toward stronger nanotube fibers

Rice model may lead to better materials for aerospace, automotive, medical applications. Carbon nanotube fibers are not nearly as strong as the nanotubes they contain, but Rice University researchers are…

Light-induced twisting of Weyl nodes switches on giant electron current

Scientists at the U.S. Department of Energy’s Ames Laboratory and collaborators at Brookhaven National Laboratory and the University of Alabama at Birmingham have discovered a new light-induced switch that twists…

Acidification impedes shell development of plankton off the US West Coast

Shelled pteropods, microscopic free-swimming sea snails, are widely regarded as indicators for ocean acidification because research has shown that their fragile shells are vulnerable to increasing ocean acidity. A new…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close