New anti-cancer agent works without oxygen
Why tumors shrink but don’t disappear.
“As tumors grow very quickly, consume a lot of oxygen and their vascular growth can’t necessarily keep pace, they often contain areas that are poorly supplied with oxygen,” explains Johannes Karges. These areas, often in the center of the tumor, frequently survive treatment with conventional drugs, so that the tumor initially shrinks but doesn’t disappear completely. This is because the therapeutic agents require oxygen to be effective.
The mechanism of action developed by Karges’ team works without oxygen. “It’s a catalyst based on the element ruthenium, which oxidizes the naturally present glutathione in the cancer cells and switches it off,” explains Karges. Glutathione is essential for the survival of cells and protects them from a wide range of different factors. If it ceases to be effective, the cell deteriorates.
Compound accumulates in tumor tissue
All cells of the body need and contain glutathione. However, the catalyst has a selective effect on cancer cells as it is packaged in polymeric nanoparticles that accumulate specifically in the tumor tissue. Experiments on cancer cells and on mice with human tumors, that were considered incurable, proved successful. “These are encouraging results that need to be confirmed in further studies,” concludes Johannes Karges. “Still, there’s a lot of research work to be done before it can be used in humans.”
Journal: Nature Communications
DOI: 10.1038/s41467-024-53646-y
Method of Research: Experimental study
Subject of Research: Animals
Article Title: Tumor-Targeted Glutathione Oxidation Catalysis with Ruthenium Nanoreactors against Hypoxic Osteosarcoma
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Milestone 10-GeV experiment shines light on laser-plasma interactions
With dual lasers and an advanced gas injector system, researchers at the Berkeley Lab Laser Accelerator Center accelerated a high-quality beam of electrons to 10 billion electronvolts in just 30…
Universal barcodes unlock fast-paced small molecule synthesis
The development of molecules to study and treat disease is becoming increasingly burdened by the time and specificity required to analyze the vast amounts of data generated by synthesizing large…
Minuscule robots for targeted drug delivery
In the future, delivering therapeutic drugs exactly where they are needed within the body could be the task of miniature robots. Not little metal humanoid or even bio-mimicking robots; think…