More efficient solar cells imitate photosynthesis

Green plants, algae and some bacteria use sunlight to convert energy. The pigments in chlorophyll absorb electromagnetic radiation which induces chemical reactions in electrons. These reactions take place in the nucleus of complex protein structures, referred to by experts as photosystems I and II.

The processes which take place in these photosystems are induced by catalysts in a certain order. In the first step, oxygen is released from water. The following reaction prepares the production of carbohydrates for which no further source of energy is needed.

The reaction centres of the photosystems are encircled by light-absorbing pigments grouped into consolidated complexes. These antennae increase the area available for light rays to hit and extend the spectrum of usable wavelengths, both prerequisites for a favourable energy balance.

Each reactor core is surrounded by approximately 30 antennae. Experiments conducted by scientists are still far from replicating the complexity of nature. In general, a ratio of 1:1 is the best that can be achieved: one light-absorbing molecule in combination with one catalyst for oxidising water.

The group of researchers led by Prof. Dr. Dirk Guldi and his former employee Dr. Konstantin Dirian hope to revolutionise solar technology by synthesising modules based on the correlation between structure and function in photosystem II.

In the newly developed systems, light-absorbing crystals such as those which are already used in LEDs, transistors and solar cells are layered into a network of hexagonal honeycombs around a water-oxidising catalyst with four ruthenium metal atoms in the centre.

When shown in a rather simplified manner, the compact, stable units made up of two components with a common long axis are reminiscent of cylindrical batteries. In the self-assembling chemical process, such ‘miniature power stations’ create two dimensional slats. Like layers in a gateau, they form a common block which collects the energy won from the sun’s rays.

This is not an entirely accurate reproduction of the ideal arrangement found in the natural photosystem, but the principle is the same. Five macromolecules in the shape of a honeycomb with the ability to capture light create a sheath around each reactor core, and it has been shown that these small power stations are efficient and successful at harvesting sun energy.

They have an efficiency of over 40 percent, losses are minimal. Wavelengths from the green portion of the colour spectrum, which plants reflect, can also be used. These research results nourish the hope that solar technology can one day make use of the sun’s energy as efficiently as nature.

Further information:
Prof. Dr. Dirk Guldi
Phone: +49 9131 85 27340
dirk.guldi@fau.de

Media Contact

Dr. Susanne Langer idw - Informationsdienst Wissenschaft

Further information:

http://www.fau.de/

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Seawater as an electrical cable !?

Wireless power transfers in the ocean For drones that can be stationed underwater for the adoption of ICT in mariculture. Associate professor Masaya Tamura, Kousuke Murai (who has completed the…

Rare quadruple-helix DNA found in living human cells with glowing probes

New probes allow scientists to see four-stranded DNA interacting with molecules inside living human cells, unravelling its role in cellular processes. DNA usually forms the classic double helix shape of…

A rift in the retina may help repair the optic nerve

In experiments in mouse tissues and human cells, Johns Hopkins Medicine researchers say they have found that removing a membrane that lines the back of the eye may improve the…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close