Chemical Reactins on the Water Surface

Continuous photochemical reaction at the oil-water interface.
(c) Burkhard König / University of Regensburg

Researchers at the University of Regensburg, led by Professor Dr. Burkhard König, Institute of Organic Chemistry, have developed a new synthesis method: Light reaction on a water surface allows chemical syntheses without the use of organic solvents or other reaction additives. This makes the production of chemical products more efficient and environmentally friendly. The results of years of research have now been published in the internationally renowned journal Science.

By forming chemical bonds between atoms, complex molecules such as those needed for medicines, crop protection products, or high-performance materials are prepared using synthetic chemistry. Such synthesis reactions typically require organic solvents, metal catalysts, and reagents such as acids or alkalis. Not all auxiliary materials and solvents can always be recycled, which results in waste.

Researchers from the University of Regensburg under the lead of Prof. Dr. Burkhard König, are now presenting a completely different way to synthesize complex molecules: the molecules to be reacted are applied to a water surface, where they form a thin film. Irradiation with violet light triggers a reaction that links both reaction partners. The new methodology exploits the film formation of water-insoluble organic molecules on the water surface (like an oil film on a puddle) to create ideal conditions for activation by light. The breadth of application of the technology was demonstrated in over 160 examples, including the synthesis of precursors of drugs. The light reaction on the water surface now allows chemical synthesis without the use of organic solvents or other reaction additives. This makes the production of chemical products more efficient and environmentally friendly. The results of years of research have now been published in the scientific journal Science.

The project has been running for about two years. During this time, numerous experiments were carried out to further develop and confirm the central discovery. Transferring the reaction to a flow reactor was a breakthrough, as the synthesis can be carried out continuously and larger amounts of product are also accessible. Spectroscopic measurements provided insight into the molecular mechanism of the reaction. In subsequent work, the synthesis technology will now be applied to other reactions to achieve the widest possible range of applications in the production of chemical products.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Burkhard König
Institute of Organic Chemistry
University of Regensburg
Phone: +49 941 943-4576
burkhard.koenig@ur.de
https://www.uni-regensburg.de/chemie-pharmazie/organische-chemie-koenig/startsei…

Originalpublikation:

Ya-Ming Tian, Wagner Silva, Ruth M. Gschwind, Burkhard König, “Accelerated photochemical reactions at oil-water interface exploiting melting point depression”, Science, 15 Feb 2024, Vol 383, Issue 6684, pp. 750-756, DOI: 10.1126/science.adl3092

Weitere Informationen:

https://doi.org/10.1126/science.adl3092

https://www.uni-regensburg.de

Media Contact

twa. Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Galaxies actively forming in early universe caught feeding on cold gas

Researchers analyzing data from NASA’s James Webb Space Telescope have pinpointed three galaxies that may be actively forming when the universe was only 400 to 600 million years old. Webb’s…

New insights into the interaction of femtosecond lasers with living tissue

Nonlinear light microscopy has revolutionized our ability to observe and understand complex biological processes. However, light can also damage living matter. Yet, the mechanism behind the irreversible perturbation of cellular…

Important software for the new European-Japanese Earth observation satellite EarthCARE

Preparations for the launch of the new Earth observation satellite EarthCARE (Earth Cloud Aerosol and Radiation Explorer) are in full swing. The joint mission of the European Space Agency (ESA)…

Partners & Sponsors