Switching nanolight on and off

An optically excited gas of electronic carriers confined to the planes of the layered van-der Waals semiconductor tungsten diselenide is shown. The consequent hyperbolic response permits passage of nanolight.
(c) Ella Maru Studio

An international research team has developed a unique platform to program a layered crystal, producing imaging capabilities beyond common limits on demand. The discovery by the team from Columbia University, the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg, the University of California-San Diego, the University of Washington, and the Flatiron Institute is an important step toward the control of nanolight – light that can access the smallest length scales imaginable. The work, now published in Science, provides insights for the field of optical quantum information processing, which aims to solve difficult problems in computing and communications.

“We were able to use ultrafast nano-scale microscopy to discover a new way to control our crystals with light, turning elusive photonic properties on and off at will,” said Aaron Sternbach, postdoctoral researcher at Columbia who is lead investigator on the study. “The effects are short-lived, only lasting for trillionths of one second, yet we are now able to observe these phenomena clearly.”

Nature sets a limit on how tightly light can be focused. Even in microscopes, two different objects that are closer than this limit would appear to be one. But within a special class of layered crystalline materials—known as van de Waals crystals—these rules can, sometimes, be broken. In these special cases, light can be confined without any limit in these materials, making it possible to see even the smallest objects clearly.

In their experiments, the Columbia researchers studied the van der Waals crystal called tungsten diselenide, which is of high interest for its potential integration in electronic and photonic technologies because its unique structure and strong interactions with light.

When the scientists illuminated the crystal with a pulse of light, they were able to change the crystal’s electronic structure. The new structure, created by the optical-switching event, allowed something very uncommon to occur: Super-fine details on the nanoscale could be transported through the crystal and imaged on its surface.

The report demonstrates a new method to control the flow of light of nanolight. Optical manipulation on the nanoscale, or nanophotonics, has become a critical area of interest as researchers seek ways to meet the increasing demand for technologies that go well beyond what is possible with conventional photonics and electronics.

“Not only do the new light-induced electronic states allow for the propagation of nano-light, but in the future they could themselves be used to achieve a better microscopic understanding of the ultra fast electron dynamics in this class of materials,“ explains co-author Simone Latini, a postdoctoral researcher in the MPSD’s Theory department.

Dmitri Basov, Higgins professor of physics at Columbia University, and senior author on the paper, believes the team’s findings will spark new areas of research in quantum matter.

“Laser pulses allowed us to create a new electronic state in this prototypical semiconductor, if only for a few pico-seconds,” he said. “This discovery puts us on track toward optically programmable quantum phases in new materials. “

Text by Carla Cantor, Columbia University / Jenny Witt, MPSD

Wissenschaftliche Ansprechpartner:

Aaron Sternbach, lead author: as5049@columbia.edu

Originalpublikation:

https://science.sciencemag.org/content/371/6529/617

Weitere Informationen:

https://www.mpsd.mpg.de/504782/2021-02-latini-nanolight?c=17189

Media Contact

Jenny Witt Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors