CERN and Caltech join forces to smash Internet speed record

CERN and California Institute of Technology (Caltech) will today receive an award for transferring over a Terabyte of data across 7,000 km of network at 5.44 gigabits per second (Gbps), smashing the old record of 2.38 Gbps achieved in February between CERN in Geneva and Sunnyvale in California by a Caltech, CERN, Los Alamos National Laboratory and Stanford Linear Accelerator Center team.

The international CERN-Caltech team set this new Internet2® Land Speed Record on 1 October 2003 by transferring 1.1 Terabytes of data in less than 30 minutes, corresponding to 38,420.54 petabit-metres per second. The average rate of 5.44 Gbps is more than 20,000 times faster than a typical home broadband connection and is equivalent to transferring a full CD in 1 second or a full length DVD movie in approximately 7 seconds. The award will be made to Olivier Martin of CERN and Harvey Newman of Caltech on the Lake Geneva Region Stand at the ITU Telecom World event in Geneva live from the Internet2 conference in Indianapolis at 17:30CET on Thursday 16 October.

“This new record marks another major milestone towards our final goal of abolishing distances and, in so doing, to enable more efficient worldwide scientific collaboration,” said Martin, Head of External Networking at CERN and Manager of the European Union DataTAG project. “The record further proves that it is no longer a dream to replicate terabytes of data around the globe routinely and in a timely manner.”

Newman, head of the Caltech team and chair of the ICFA Standing Committee on Inter-Regional Connectivity said: “This is a major milestone towards our goal of providing on-demand access to high energy physics data from around the world, using servers affordable to physicists from all regions. We have now reached the point where servers side by side have the same TCP performance as servers separated by 10,000 km. We also localized the current bottleneck to the I/O capability of the end-systems, and we expect that systems matching the full speed of a 10 Gbps link will be commonplace in the relatively near future.”

“The team from Caltech and CERN have demonstrated an unprecedented level of high-performance networking, focused on supporting the requirements of leading-edge research,” said Rich Carlson, Chair of the Internet2 land speed record (I2-LSR) judging panel. “This new I2-LSR mark shows that the capabilities of the underlying network infrastructure is able to accommodate even the most demanding needs of scientists around the world.”

The new record was set through the efforts of the DataTAG and FAST projects, with major sponsorship from Cisco Systems, the European Union, HP, Intel, Juniper, Level 3 Communications, T-Systems, the US National Science Foundation, and the US Department of Energy. The extension of the 10Gbps DataTAG testbed to the Telecom World 2003 exhibition hall in Palexpo was made possible thanks to Cisco Systems, OPI (Geneva’s Office for the Promotion of Industries & Technologies), SIG (Services Industriels de Genève) and Telehouse Europe.

The rate of progress in long distance networking is such that even while preparing to accept the award, the CERN-Caltech team do not rule out breaking their own record during the course of the ITU Telecom World event.

Media Contact

Renilde Vanden Broeck CERN

All news from this category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Novel chirped pulses defy ‘conventional wisdom’

University of Rochester researchers describe first highly chirped pulses created by a using a spectral filter in a Kerr resonator. The 2018 Nobel Prize in Physics was shared by researchers…

Scientists design superfast molecular motor

Light-driven molecular motors have been around for over twenty years. These motors typically take microseconds to nanoseconds for one revolution. Thomas Jansen, associate professor of physics at the University of…

Changing a 2D material’s symmetry can unlock its promise

Jian Shi Research Group engineers material into promising optoelectronic. Optoelectronic materials that are capable of converting the energy of light into electricity, and electricity into light, have promising applications as…

Partners & Sponsors