Development of advanced quantum networks

Illustration of the process of light scattering inside the cavity directly to the waveguide through interaction between the optical and mechanical domains
Credit: André Garcia Primo/UNICAMP

This research carried out at the State University of Campinas focused on the use of nanometric optomechanical cavities as bridges between superconducting circuits and optical fibers, with applications in computing and quantum communications.

The ability to transmit information coherently in the band of the electromagnetic spectrum from microwave to infrared is vitally important to the development of the advanced quantum networks used in computing and communications.

A study conducted by researchers at the State University of Campinas (UNICAMP) in Brazil, in collaboration with colleagues at ETH Zurich in Switzerland and TU Delft in the Netherlands, focused on the use of nanometric optomechanical cavities for this purpose. These nanoscale resonators promote interaction between high-frequency mechanical vibrations and infrared light at wavelengths used by the telecommunications industry.

An article on the study is published in the journal Nature Communications.

“Nanomechanical resonators act as bridges between superconducting circuits and optical fibers. Superconducting circuits are currently among the most promising technologies for quantum computing, while optical fibers are routinely used as long-distance transmitters of information with little noise and no signal loss,” said Thiago Alegre, a professor at the Gleb Wataghin Institute of Physics (IFGW-UNICAMP) and last author of the article.

According to Alegre, one of the key innovations in the study was the introduction of dissipative optomechanics. Traditional optomechanical devices rely on purely dispersive interaction, where only photons confined in the cavity are efficiently dispersed. In dissipative optomechanics, photons can be scattered directly from waveguide to resonator. “Optoacoustic interaction can be controlled more tightly as a result,” he said.

Prior to this study, dissipative optomechanical interaction had been demonstrated only at low mechanical frequencies, precluding important applications such as quantum state transfer between the photonic (optical) and phononic (mechanical) domains. The study demonstrated the first dissipative optomechanical system operating in a regime where the mechanical frequency exceeded the optical linewidth. “We succeeded in raising mechanical frequency by two orders of magnitude and achieved a tenfold rise in the optomechanical coupling rate. This offers highly promising prospects for the development of even more effective devices,” Alegre said.

Quantum networks

Fabricated in collaboration with TU Delft, the devices were designed to use technologies that are well-established in the semiconductor industry. Nanometric silicon beams were suspended and free to vibrate, so that infrared light and mechanical vibrations were confined simultaneously. A laterally placed waveguide positioned to permit the coupling of the optical fiber to the cavity gave rise to dissipative coupling, the key ingredient of the results presented by the researchers.

The study offers novel possibilities for the construction of quantum networks. In addition to this immediate application, it lays a basis for future fundamental research. “We expect to be able to manipulate mechanical modes individually and mitigate optical non-linearities in optomechanical devices,” Alegre said.

The other co-authors are André Garcia PrimoPedro Vinícius Pinho and Gustavo Silva Wiederhecker, all of whom are also affiliated with UNICAMP; Rodrigo da Silva Benevides at ETH Zürich; and Simon Gröblacher at TU Delft. The study received funding from FAPESP via seven projects (19/09738-920/15786-319/01402-118/15577-518/15580-618/25339-4 and 22/07719-0).

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at www.fapesp.br/en and visit FAPESP news agency at www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Journal: Nature Communications
DOI: 10.1038/s41467-023-41127-7
Article Title: Dissipative optomechanics in high-frequency nanomechanical resonators
Article Publication Date: 18-Sep-2023

Media Contact

Heloisa Reinert
Fundação de Amparo à Pesquisa do Estado de São Paulo
hreinert@fapesp.br
Cell: 55-11966392552

Media Contact

Heloisa Reinert
Fundação de Amparo à Pesquisa do Estado de São Paulo

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

World’s smallest molecular machine

… reversible sliding motion in ammonium-linked ferrocene. Researchers stabilized ferrocene molecules on a flat substrate for the first time, creating an electronically controllable sliding molecular machine. Artificial molecular machines, nanoscale…

Towards the control of chemical reactions

Overcoming one of the challenges of quantum mechanics: A major result in quantum mechanics has been achieved: for the first time, the temporal evolution of a quantum system has been…

Planets form through domino effect

New radio astronomy observations of a planetary system in the process of forming show that once the first planets form close to the central star, these planets can help shepherd…