Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synchronous reluctance technology increases energy efficiency and dynamic response

16.03.2015

Siemens at the Hannover Messe 2015: Hall 9, Booth D35

  • Integrated Drive System (IDS) comprising Simotics reluctance motors and Sinamics converters for cost-effective, efficient plant operation
  • High levels of efficiency in full and partial load range
  • High dynamic response and speed consistency for precise control
  • Output range from 5.5 to 30 kilowatts (kW)

The Simotics reluctance motors with an aluminum or gray cast-iron enclosure cover an output range from 5.5 to 30 kW, achieving high levels of efficiency in full and partial load range.

Siemens is extending its portfolio of Integrated Drive Systems (IDS) with a new drive series featuring synchronous reluctance technology, characterized by very high levels of efficiency.

Reluctance motors and converters are specially designed to work together as an Integrated Drive System, enabling particularly efficient operation. Predefined parameters in the form of a code on the motor type plate simplify the commissioning process.

The new drive series is based on the proven Simotics 1LE1 motor platform, and is designed to interoperate with the Sinamics G120 converters. The Simotics reluctance motors cover an output range from 5.5 to 30 kW and are available either with an aluminum enclosure for general operating conditions (Simotics GP) or with a gray cast-iron enclosure for more aggressive operating conditions (Simotics SD). The synchronous principle means that the speed remains constant, and sensorless vector control ensures optimum performance. Both features enhance the controllability of the drive system. Ramp-up times are short thanks to the motor's low inherent moment of inertia combined with the vector control. The low losses in the rotor result in a high thermal utilization of the motor. In terms of its design and handling, the motor is similar to the 1LE1 asynchronous motors.

The Sinamics G120 standard converter incorporates vector control designed specifically for reluctance motors. The identification of the pole positions prevents jerking movements of the drive on activation, while a flying restart enables synchronization with the running motor. As part of the Totally Integrated Automation (TIA) concept, the drive series is integrated into the automation environment via Profibus and Profinet interfaces.

The reluctance technology is used in process engineering with pumps, fans, compressors, mixers and centrifuges, in materials handling applications, and in the mechanical engineering sector.

The Simotics reluctance motors with an aluminum or gray cast-iron enclosure cover an output range from 5.5 to 30 kW, achieving high levels of efficiency in full and partial load range.

For further information on motors, visit www.siemens.com/reluctance-drive-system


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 357,000 employees worldwide. Further information is available on the Internet at www.siemens.com


Reference Number: PR2015020119PDEN


Contact


Mr. Stefan Rauscher
Process Industries and Drives Division
Siemens AG

Gleiwitzer Str. 555

90475 Nuremberg

Germany

Tel: +49 (911) 895-7952

stefan.rauscher​​@siemens.com

Stefan Rauscher | Siemens Process Industries and Drives

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>