Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart sensors for efficient processes

16.10.2017

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that testing is restricted to random sampling, faults in processes are often not found until a large amount of scrap has already been produced. Consequently, nondestructive testing method represent an alternative, and after appropriate adaptation processes, also a replacement for destructive methods for the long run.


Schematic layout of a rolling line for nondestructive testing of heavy plates

Fraunhofer IZFP


An engineer performs robotics-supported testing of steel sheets for mechanical properties (residual stresses) using micromagnetic testing (3MA).

Fraunhofer IZFP / Uwe Bellhäuser

Cognitive sensors for quality assurance in production

At this year's Blechexpo, our engineers will demonstrate a robotics-supported sensor system that can rapidly and easily be integrated into production processes. The automated application of intelligent, nondestructive sensor systems is not only essential for ensuring optimum product quality in production, it is also indispensable for realizing current machine learning concepts.

The potential use of such systems will be demonstrated in an exemplary case of robotics-supported testing of press-hardened parts by means of EMAT* and 3MA**. EMAT allows couplant-free testing of defects in sheet metal, while parallel application of 3MA makes quantitative material characterization possible.

Testing within seconds

The advantages of the robotics-based combination of the two sensors (3MA, EMAT) include rapid testing in mere seconds, determining and evaluating several relevant quality characteristics, as well as the nondestructive testing of sheet metal. "The combined sensor-based testing process allows early detection of mechanical properties, e.g., the residual stress and the hardness of steel, as well as defects like cracks or necking. This will save resources, reduce costs, and contribute to strengthening manufacturers' competitive position," explained Frank Leinenbach, development engineer at the Fraunhofer IZFP. The institute has decades of experience and expertise in combining and automating nondestructive testing methods for production.

Quality assurance during steel production

The steel-producing and -processing industries need nondestructive testing methods in quality assurance. Frequently relevant quality characteristics include hardness, case depth, strength, and residual stresses. In this context, nondestructive micromagnetic testing methods are optimally suited for providing fast and reliable statements on the quality status of ferromagnetic materials.

"An inspection task that is being requested frequently is the monitoring of heavy steel plates, and the related detection of localized increases in surface hardening," explained Sargon Youssef, researcher and engineer at the Fraunhofer IZFP.

These localized effects can be detected by means of micromagnetic measuring effects when the 3MA-X8 testing technology developed at the Fraunhofer IZFP is applied. The specific strengths of the 3MA-X8 testing system lie in its user-friendly learning curve and calibration, as well as in its variable and robust sensor design. A key point is the test system's multi-channel real-time capability.

The 3MA-X8 testing method will be demonstrated at the Blechexpo in Stuttgart using a fair exhibit. As under realistic conditions, our high-tech testing technology will be integrated in a miniaturized rolling line. Here, sheet metal to be tested will be measured using the testing method, detected, and sorted – if necessary – into "OK sheet metal" or "not-OK sheet metal".

* EMAT: Electromagnetic acoustic transducer
** 3MA: Micromagnetic multiparameter, microstructure, and stress analysis

Weitere Informationen:

http://www.izfp.fraunhofer.de
https://www.facebook.com/FraunhoferIZFP/
https://twitter.com/FraunhoferIZFP

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Trade Fair News:

nachricht HMI 2019: Conductive metal-polymer inks for inkjet printing: flexible electronics without sintering
18.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht High-precision solutions for optics and electronics: successful debut for microtechnologies at W3
15.03.2019 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>