Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polyamides from terpenes: Amorphous Caramid-R® and semi-crystalline Caramid-S®

09.10.2019

The Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB is using a new, recently patented process to develop new polyamides from the terpene 3-carene, a residual material from the cellulose industry. The biobased polyamides Caramid-R® and Caramid-S® produced using this process represent a new class of polyamides with outstanding thermal properties. The production of the monomer for Caramid-S® was already successfully piloted in a 100-liter scale. The Fraunhofer researchers will present the new polyamides at the K trade fair in Düsseldorf from 16 to 23 October 2019 (Hall 7.0, Stand SC01).

The Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB has developed a sustainable alternative to petrochemically produced plastics using terpenes found in resin-rich wood.


From wood waste to high-performance polymers: Terpenes from turpentine oil are converted to biobased, heat-stable polyamides.

© Fraunhofer IGB

The natural substances are available from conifers such as pine, larch or spruce. In the production of pulp, in which wood is broken down to separate the cellulose fibers, the terpenes are isolated in large quantities as a by-product, turpentine oil.

In the joint project “TerPa – Terpenes as building blocks for biobased polyamides” funded by the German Federal Ministry of Food and Agriculture (BMEL) through the German Agency for Renewable Resources (FNR), researchers of Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing branch have succeeded in optimizing the synthesis of lactams from 3-carene and the subsequent polymerization to Caramid-R® and Caramid-S®, representatives of a new class of terpene-based polyamides. Recently, a patent was granted for the synthesis process of the new polyamides from terpenes.


One-pot reaction sequence and scale-up to 100 liters

The conversion of 3-carene to the corresponding lactam is possible in four successive chemical reactions that require neither complex production facilities nor expensive reagents. The key steps to the polymer building blocks 3S- and 3R-caranlactam are the selective production of the intermediate 3S-caranketone and its selective rearrangement to the isomeric 3R-caranketone.

The special feature is that the conversions can take place as a one-vessel reaction sequence in a single reactor. "This offers the possibility to produce the lactams also in simple plants without a complex reactor cascade. It is not necessary to purify the intermediate products," explains Paul Stockmann, who developed and optimized the promising process.

The synthesis of the monomer for Caramid-S® has now been scaled to the 100-liter scale at the Fraunhofer Center for Chemical-Biotechnological Processes CBP, the Leuna branch of Fraunhofer IGB. "In this pilot production, we produced several kilograms of monomer, which allows the polymerization to be scaled to the kilogram scale," says Dr. Harald Strittmatter, who heads the TerPa project.


Excellent thermal properties

The chemical structure of the natural substance 3-carene, which has barely been used commercially to date and would be very difficult to access from petrochemical feedstocks, leads to new polyamides that contain cyclic structures along the polymer chain. Due to these rings and other substituents, Caramid-S® and Caramid-R® have exceptional thermal properties compared to standard polyamides: The softening temperatures (glass transition) are above 110 °C.


Caranlactams expand functional properties of standard polyamides

In addition, the scientists have converted the biobased lactams to copolymers with other commercially available monomers – laurolactam for PA12 and caprolactam for PA6. This enables the possibility of changing the properties such as the transparency of the polyamides PA6 and PA12, thus extending their application profile.

Currently, the Fraunhofer scientists are working on further improvements of the monomer synthesis which is essential for an economically viable polyamide. Furthermore, they are investigating the properties of the polymers in detail to identify potential applications and implement commercial use of the biopolyamides together with industrial partners.

Wissenschaftliche Ansprechpartner:

Dr. Harald Strittmatter
Bio, Electro and Chemocatalysis BioCat, Straubing branch

Schulgasse 11a
94315 Straubing

Phone +49 9421 187-350
Fax +49 9421 187-360
E-Mail harald.strittmatter@igb.fraunhofer.de

Weitere Informationen:

https://www.igb.fraunhofer.de/en/press-media/press-releases/2019/polyamides-from...

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>